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CHAPTER 1

A REVIEW OF LITERATURE AND BACKGROUND

1.1 Introduction

Flutter of aeroelastic structures refers to the interaction between
aerodynamic, inertia, and elastic forces. It is characterized by unstable
oscillations at a critical airflow speed. Above that flutter speed, the oscillations
grow until the amplitude reaches a value above which the nonlinearities bring the
flutter into limit cycle oscillations (LCO). The role of nonlinearities on the flutter
boundary depends on the system parameters, airflow conditions, speed,
turbulence, gust, etc. The coupling of several degrees of freedom (DOF) is also
an essential feature of flutter. With reference to the flutter of a cantilever wing,
the coupling between bending and torsional deflection is predominant.

An accurate analytical or numerical modeling requires a strong
background of aerodynamic loading and its interaction with structural mechanics.
For this reason this chapter provides different approaches of describing
aerodynamic forces and moments. This overview is followed by different
combined models of structural-flow interaction. Based on findings that will be
covered in chapter 2 (stabilization of the wing under parametric excitation), a
review of stabilization of different mechanical systems under parametric
excitation will be presented.

In some cases two identical aeroelastic structures may exhibit different
flutter characteristics. For example, the flutter speed may not be the same for

each structure. The main reason for this unexpected observation owes its origin
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to the structure parameter uncertainties. This chapter will also provide an
assessment of the influence of parameter uncertainties on aeroelastic structures

and will identify the unresolved problems.

1.2 Aerodynamic Modeling

Different approaches are developed in the literature to determine the
aerodynamic loading acting on aeroelastic structures. These methods are either
analytical or numerical. The analytical approaches are based on restricted
assumptions which lead to linear descriptions. Numerical schemes are versatile
and include flexibility to account for the nonlinear flow and provide more realistic
representation of aerodynamic loading. The next subsections briefly describe the

two approaches.

1.2.1 ANALYTICAL SCHEMES (LINEAR)

The analysis of aeroelastic flutter usually depends on the methods of
aerodynamic loading. Linear modeling is based on linear representations of
aerodynamic, elastic, and inertia forces. Nonlinear modeling, on the other hand,
considers the inherent nonlinearity of any of these forces or combination of them.
Ashley [1] presented the state-of-the-art up to 1978 of solved and unsolved
problems of aeroelastic stability. Resolved problems included the torsional and
flexural-torsional divergence of conventional lifting surfaces, and subsonic and
supersonic flutter of isolated lifting surfaces. The unresolved problems included

deterministic and stochastic flutter of nonlinear aeroelastic structures in the
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presence of time-varying in-plane excitations. This in addition to the stochastic
flutter of linear and nonlinear aeroelastic structures in transonic and supersonic
flow regimes.

For the calculation of the aerodynamic loads, several analytical theories
have been developed. These include (a) the Wagner theory [2-4], (b) the
modified strip analysis [5], (c) the modified two-dimensional loading [6], (d) the
subsonic kernel function [7], and (e) the rectangular wing theory [8]. Among the
methods stated above, the first two (a) and (b) are the most utilized in aeroelastic
analytical formulations. Also the modified strip analysis (b) was frequently
adopted to calculate the flutter speed in industry up to the late 1960’s. Because
of that, only these two methods will be discussed in detail below. In the analytical
theories the lift force and aerodynamic moment are eventually obtained in a
closed form.

It is believed that the early analysis of wing flutter in an incompressible
subsonic flow was based on a quasi-stationary formulation. Theodorsen [9] and
Wagner [2] developed non-stationary formulations that account for the lag effects
of the unsteady aerodynamics for different frequencies. Later, Theodorsen and
Garrick [10] conducted an experimental investigation to examine the validity of
the predicted flutter speed and frequency.

The Wagner theory and the modified strip theory give the unsteady
aerodynamic loads for two-dimensional incompressible potential flow at subsonic
speeds. The modified strip theory, based on Theodorsen’s work [9], includes

alterations in the expressions of lift, moment, and circulation function in order to
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approximate the effects of the span finite length. In both theories the
aerodynamic loads contain a non-circulatory flow component that contributes to
the lift and moment with a virtual mass and a circulatory component that takes
into account the vortex caused by the wake. The non-circulatory component is
the same in both theories but the circulatory component uses the Wagner’s
function [2] in the first case and Theodorsen’s function [9] in the second case.
The aerodynamic loads according to Theodorsen’s theory can be obtained from
Wagner’s theory under the assumption of harmonic motion of the wing.

The derivations of the unsteady aerodynamic loads using Wagner’s theory
as they are described by Fung [4] are presented in this section. First we consider
a two-degree-of-freedom airfoil describing a vertical translation u (plunge), taken
positive downward, and a rotation o (pitch angle) about the elastic axis located

at a distance 6, =ab from the mid-chord, positive nose up as shown in Figure
1.1. Assuming two-dimensional flow with constant flow speed U_, the lift force is

composed of a circulatory part and non-circulatory part which is caused by
“apparent mass” forces.

For plunge and pitch oscillations, the circulation’ about the airfoil is
determined by the downwash? velocity at the ¥%-chord point from the leading
edge of the airfoil. The downwash at %-chord point due to both plunge and pitch
contains:

a) a uniform downwash w, corresponding to the pitch, w,=U_sina=U_a,

where U _ is the speed of undisturbed flow;

! Circulation is the line integral of fluid velocity around a closed curve
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duds U_ ,
u

b) a uniform downwash w, due to vertical translation, w, sdt b

=U_U', where prime denotes a differentiation with respect to the non-

0

u/b the non-dimensional plunge, t is

dimensional time s=U_t/b, U
dimensional time, and b is the half-chord;

c) a non-uniform downwash w, due to —a, its value at the %4-chord being

W, = l—a bd—a%: l—a U_a', where oc':d—a.
2 ds dt 2 ds

Adding a), b), and c), the total downwash w(u,a,t) is:
W(U,o,t) =W, +W, +W, :Uwa(t)+u(t)+(%—ajba(t) (1.1)

This expression can be written in terms of the non-dimensional time parameter s

as:
w(u,a,s)=Uwa(s)+UwLT(s)+[%—ajuwoc’(s) (1.2)
In the time interval (s,,s, +ds, ), the downwash is increased by dw(s,)/ds,. If ds,

is sufficiently small, it may be regarded as impulsive increment and the

circulatory lift per unit span is given by [4]:

% Downwash refers to the flow of air behind a wing. The downwash behind a wing is a
consequence of the wing trailing vortex system. (www.wikipedia.com)
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dLl(U,a,s):anmbqu)(s—sO)stO, over ds, for s>s, (1.3)
0

where p_is the air density, ¢(s) is Wagner’s function which describes the growth

of circulation about the airfoil due to the sudden increase of downwash.

Approximate expression for the Wagner’s function is given by Jones [11]:
q)(s):l_\yle_gls _er_gzs (1.4)

where y, =0.165, v, =0.335, & =0.0455,&, =0.3.

The total circulatory lift per unit span at time s is obtained by integrating

equation (1.3) with respect to s:

L (T, a,s)=2np,bU, J' <|>(s—s0)st0 (1.5)
—o 0
If the motion starts from s=0, equation (1.5) becomes:
_ : dw(T,a,s,)
L, (T,a,5)=2mp,bU,, w0¢(s)+j¢(s—so)Tols0 (1.6)
0 0

where w, =U (a(0)+u_'(0)+(——ajoc’(0)j is the initial value of downwash.

The lift and moment of the non-circulatory flow include the following
components:

a) a lift force having the center of pressure at the mid-chord generated by

apparent mass mp_b*:
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L, =np,b* (li(t)—abéi(t))=mp,bU (U"(s)—-aa(s)) (1.7)

b) a lift force (of centrifugal nature) having the center of pressure at %-chord

point generated also by apparent mass np_b’:
L, =np,b’U, a(t)=mnp,bU’a'(s) (1.8)
c) a nose down moment generated by apparent moment of inertia pwnbz(bz /8):
M, = —mp_b'U2 éd(t) — _rp.b’U2 éa"(s) (1.9)
The total lift per unit span is given by:

L(TU,a,8)=L, +L, +L, (1.10)

The total moment per unit span about the elastic axis is given by:
M(U,a,s):(%+aijl+abL2—(%—a)bL}+Ma (1.11)

Combining (1.2) with (1.6), and introducing the full expression for each

component, the aerodynamic lift per unit span become:
L(T,a,s)=mp,bU’ (LT"(S) —aa"(s)+ oc'(s))+ 271p, U2 [oc(O) +0'(0)

+£%—aja’(0)}¢(s) +2npmbUii.¢(S—SO)(OU(SO)+U"(So)+(%_aja”(30)jdso

(1.12)

www.manaraa.com



The aerodynamic moment about the elastic axis, per unit span is given by:

M (0, 0,) = 7p, U (a[ﬁ"(s)—aoc"(s)]—(%—a)a’(s)—éoc”(s)j
\2mp U (%+aj(a(0)+u"(0)+£%—aja’(0)]¢(s)

+2np b’U’ G+ ajj'cb(s— so)(oc'(so)+ U"(SO)+(%— a)oc"(s0 )j ds, (1.13)

Assuming harmonic motion of the wing, the aerodynamic loads given in

equations (1.12) and (1.13) according to the Theodorsen’s theory® are:

L(u,a,t)=2mp, U_bB(k)w(u,a,t)+nrp, b’ (li—bac)+mp, b*U_ d (1.14)

M (U, t) = 27p.U_b° G+aj B () w(u,at)

4
+npwab3(U—baé’n)—(%—a)npwbwwd—%d (1.15)

where W(u,a,t) is the downwash and its expression is given in the equation (1.1),
B(k) is called the Theodorsen's or circulation function, which is a function of the
reduced frequency, k =bw/U_ (o is the natural frequency of the wing structure).

Generally, the Theodorsen’s function is a complex function whose real part
modifies the load component in-phase with the angle of attack, while its

imaginary part accounts for the out-of-phase load component. Jones (see, e.g.

° Note that the aerodynamic loads given by equations (1.14) and (1.15) are in dimensional form
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[4, 11]) introduced an approximation, stated below, to Theodorsen’s function in

order to predict the wing dynamic behavior in unsteady aerodynamic field:

B(k)=F (k) +iG (k) (1.16)

where

2 2
Jpo 065K 0335

F (k) _ 0.0075k 0.1005k
k?+0.00207 k*+0.09

k> +0.00207 k>+0.09

Although it would seem straightforward to use the real and imaginary parts
directly in the flutter analysis, this procedure was found to give poor results in
comparison with experimental results as reported by Yates [5]. The large phase
angles of complex circulation functions associated with two-dimensional flow
were found to be inappropriate for three-dimensional wings. Yates found that if
the phase angles remained moderately small the calculated flutter speed would
be relatively insensitive to changes in the magnitude of the imaginary part.

The real part of the circulation function is usually given in terms of the first
eigenvalue of the coupled modes and Mach number for different values of a
frequency parameter (non-dimensional flow speed). Small disturbances to the
flow are assumed, which imply that the resultant fluid speed differs only slightly

from the free stream speed.

1.2.2 NUMERICAL SCHEMES

There are two ways to numerically model the aerodynamic loads. One

way is to model the entire flow by one of the computational fluid dynamics
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schemes based on finite difference or finite volume methods to directly solve the
fluid flow equations. This approach is the most accurate yet and it is considered
the ultimate approach. Unfortunately the method is very expensive in
computational time because it needs to grid the entire flow. Another way to
numerically model the aerodynamic loads is to use potential flow models based
on singularity elements. Singularity element models are based on a general
method for calculating the incompressible potential flow about arbitrary body
shapes [12-24]. A general description of singularity element models is given

below, starting with the fluid field equations.

1.2.2.1 Fluid Field Equations
In an inviscid, incompressible and irrotational* flow, the velocity field can
be expressed in terms of a potential function ® whose gradient gives the flow

velocity vector as (e.g. [23]):
V=Vo (1.17)

where V is the fluid velocity vector, and v="i7,9 °+ikA, where i, |, k are
OX OX~  OX

the unit vectors of Cartesian coordinates x, y, and z respectively. In this case
the governing equation for the velocity field is given by the continuity equation

(Laplace’s equation) (see Appendix D for further details):

*In an irrotational flow the fluid does not move in circular or helical motions; it does not form
vortices (www.wikipedia.com)
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V®=0 (1.18a)

If the flow is passing over a solid body the following boundary condition is

imposed:
Vd-n=0 (1.18b)

where n represents the unit vector normal to the solid body. Another condition
requires that the resultant velocity of the flow at points far away from the solid
boundary has to be equal to the undisturbed velocity of the flow.
Now it is necessary to define some elementary flows such as: uniform
flow, source or sink, doublet, and potential vortex [23]:
e A two dimensional uniform flow parallel to the x-direction is shown in

Figure 1.2. The potential function for this flow in cylindrical coordinates is:
®=U_rcos0 (1.19)

where r is the radial coordinate from the origin and 0 is the angle made
with the x-axis.

e A source is defined as a point from which fluid is generated and flows
radially outward as seen in Figure 1.3. The potential function for a two-
dimensional source centered at the origin is given by:

®:£lnr (1.20)
27
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where K is the source’s strength. As we can see from equation (1.20),
there is a singularity at the source’s center (r=0). For this reason a
source is called singularity.

e A sink is a negative source. This implies the fluid flows into a sink along

radial streamlines®. The potential function is given by

o=—Finr (1.21)

e A doublet (see Figure 1.4) is the singularity which results when a source
and a sink of equal strength approach each other such that the product of
their strength (K ) and their distance apart remains constant in the limit as
the distance between them approaches zero. The line along which the
approach is made is called the axis of the doublet and it has a positive
direction when oriented from sink to source. The potential for a doublet is

given by:
®=—cos0 (1.22)

where B is a constant.
e A potential vortex is a singularity about which fluid flows with concentric
streamlines as seen in Figure 1.5. The potential for a vortex centered at

the origin is given by:

® Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the
flow (www.wikipedia.com).
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Do (1.23)

where T", which is called circulation, is the strength of the vortex.

The singularity element methods use singularities distribution over the
wing body and calculates this distribution as the solution of an integral equation
[25]. Most of these methods specify a source distribution of variable strength
(e.g. source-panel models), a dipole distribution of variable strength (e.g.
doublet-lattice, and doublet-panel methods), or a vortex distribution of variable
circulation (e.g. vortex-lattice methods, and vortex-panel methods). From the
above mentioned methods, doublet-lattice and vortex-lattice methods have been
extensively used over the years in the calculation of the aerodynamic loads in
potential flows.

An example of discretization using singularity elements is presented in
Figure 1.6(a). In this case the singularities are vortex rings used by vortex-lattice
and vortex-panel methods [24]. Some typical ring elements are shown in Figure

1.6(b) (where L.E. is wing leading edge, T.E. is wing trailing edge, U _ is speed of

airflow, I" is circulation around a vortex line, and collocation points are the points
where the lift force is calculated).

The purpose of the singularity elements methods is to find the velocity
field V needed in the Bernoulli’'s equation to calculate the airflow pressure

necessary to compute the aerodynamic loads. The Bernoulli’'s equation in
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unsteady form for a point P, which belongs to discretized wing (see Figure 1.6b),

is given by:

ag-i-lvpz-f-&:luozcﬁ-& (1.24)

o 2 Pe 2 P

where @ is the total velocity potential function, V, is the fluid velocity at point P
in the flow, p is the pressure at point P, p is the fluid density at point P, p, is

the pressure of the undisturbed airflow, U is speed of undisturbed airflow. The

nonlinearity in the flow is given by the unsteady term %) and the %VPZ term.

Some models drop the unsteady term and linearize the %VF? term in order to

simplify the model.
Next step is to calculate the pressure difference across the airfoil as

follows:
APy = Pp. — Ppy (1.25)

where p,, is the pressure below the wing body and p,, is the pressure above
the wing body. The pressures p, and p,, are calculated using Bernoulli's
equation (1.24).

The lift force, L, (see Figure 1.6b), for a discrete point P is then obtained

integrating the pressure as follows:

L, = Ap,AA, (1.26)

www.manaraa.com



15

where AA, is the area of the element that encloses P . A detailed description of

the aerodynamic loads obtained to the unsteady vortex lattice method is given in

the Chapter 3.

1.2.2.2 Vortex Lattice Method

Early developments of numerical algorithms based on vortex lattice
method were done by several authors [26-28]. For example Mook and Maddox
[26] modified the vortex lattice method to include the effects of leading-edge
separation and this modified method was applied to calculate the aerodynamic
loads on high swept delta wings. Asfar, et al. [28] developed a numerical method
that predicts the potential flow-field past arbitrary bodies. The method uses a
combination of a vortex lattice and sources. For blunt bodies, the method
appeared to be superior to either vortex lattice or the sources acting alone while
for slender bodies there is no visible advantage comparing to vortex lattice alone,
and vortex lattice appears to be superior to the sources.

A general unsteady vortex lattice method was developed by
Konstadinopoulos, et al. [29]. The method is an extension of the vortex-lattice
technique and is not limited by aspect ratio, camber, or angle of attack, as long
as vortex breakdown does not occur above the surface of the wing and
separation occurs only along sharp edges. The procedure treats steady flows
more efficiently than the specialized steady flow vortex lattice. The comparison
with experimental results showed that the developed procedure accurately

predicted the aerodynamic loads.
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Since then, the general unsteady vortex lattice method was used in many
other studies [25, 30-38]. For example, Strganac and Mook [34] coupled the
equations of motion of the structure with the governing equations of the fluid
obtained by the general unsteady vortex lattice method and treated the fluid and
structure as a single system which was integrated by a predictor-corrector
algorithm. The results predict simultaneously and interactively the motion of the
structure and the fluid in the time domain. Two models were used to demonstrate
the technique: a rigid wing on an elastic support and an elastic wing rigidly
supported at the root chord. Nuhait and Mook [35] included the steady and
unsteady ground effects in the wing modeling. It was found that the aerodynamic
coefficients increase near the ground and the ground effect increases when the
aspect ratio increases. Also the steady ground effect increases the rolling
moment and side force.

Preidikman and Mook [36] found that when the speed is low, the
responses to initial disturbances contain many frequencies and decay. As the
speed or the angle of attack increases the responses become more organized
(energy concentrates around a few frequencies). It appeared that the flutter is a
supercritical Hopf bifurcation®. At and above the critical flutter speed LCO were
encountered. The amplitudes of the LCOs grew as the speed increased. Then
LCO experienced a secondary supercritical Hopf bifurcation and become

unstable.

6 Supercritical Hopf bifurcation is characterized by connecting the static equilibria with periodic
motion in a branching form as one of the system control parameters reaches a critical value.
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Luton and Mook [37] implemented a feedback control system to suppress
the flutter. The results showed that the suppression of flutter by means of active
control is possible at velocities well beyond the flutter speed and that limit cycle
oscillations might exist near flutter speed. To suppress flutter, Hall [38] used a
classical linear control strategy based on proportional-integral (Pl) feedback and
a novel nonlinear controller based on the phenomenon of saturation that exists
as a result of a specific internal resonance. It was shown that linear control
method provides excellent flutter suppression and probably gust-load alleviation
while the nonlinear controller is only effective when the controller is actively tuned
to the structural response.

Soviero and Bortolus [39] and Soviero [40] developed a numerical method
to calculate the unsteady pressure distribution on harmonically oscillating lifting
surfaces in subsonic flow. The method is a generalization of the vortex lattice
method applied to a two-dimensional case of a harmonically oscillating plate. The
unsteady vortex lattice method is also used in some commercial computer codes

such as HESS, VSAERO, QUADPAN, MCAERO, and PAN AIR [25].

1.2.2.3 Doublet Lattice Method

The doublet lattice method was the primary method used in industry to
predict flutter for the last 30 years. It replaced the modified strip theory [5] which
formed the basis for the flutter in the late 1960s. A survey up to 1971 of
developments of the vortex- and doublet- lattice methods in steady and

oscillatory motion at subsonic speeds was made by Kalman, et al. [41]. A review
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of the doublet lattice method as well as the status of the unsteady aerodynamic
prediction in industry was made by Yurkovich [42].

An early development of the doublet lattice method was done by Albano
and Rodden [43] who obtained approximate solutions for the aerodynamic loads
by idealizing the wing surface as a set of lifting elements which are short line
segments of acceleration-potential doublets. Load on each element is
determined by satisfying the normal velocity boundary condition at a set of points
on the surface (normal velocity must be zero at the boundary).

Later, Rodden, et al. [44] modified the doublet lattice method to extend its
frequency limits for applications to higher frequency flutter. A hybrid doublet-
lattice / double-point method was developed by Eversman and Pitt [45]. The
hybrid code handle unequal strip widths and nonparallel intersecting lifting
surfaces and increases the computational efficiency in comparison to classical
doublet lattice code. Also two quasi-doublet-lattice methods for oscillating thin
airfoils in subsonic flow were developed by Ando and Ichikawa [46]. One method
contain a special device for a chord-wise logarithmic singularity resulting from the
kernel function while the other does not. It was shown the device drastically
improves the convergence of the solution.

An application of the doublet lattice method to delta wings was given by
van Zyl [47]. A generalization of a doublet lattice method was used by Edwards

and Wieseman [48] to calculate the root loci’ for the wing model for

" In control theory, the root locus is the locus of the poles of a transfer function as the system gain
is varied on some interval (www.wikipedia.com).
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incompressible flow conditions. The scope of this research was to illustrate the
nature of the flutter and divergence instabilities.
The sources of the aerodynamic nonlinearities will be discussed in the

following paragraph.

1.2.2.4 Sources of Aerodynamic Nonlinearities

A good description of aerodynamic nonlinearities was given by Lee, et al.,
[49]. The aerodynamic nonlinearities are caused by the unsteady forces, wing-tip
vortex formation, or flow separation. If the flow is assumed inviscid so the flow
separation cannot take place, the presence of shock waves in transonic flow
generates unsteady forces that destabilize the airfoil pitching motion and affect
the bending-torsional flutter by lowering the flutter speed. Ashley [50] showed
that the shock waves have an oscillatory motion in addition to the wing oscillatory
motion. Between the motion of the shock wave and the motion of the wing there
is a large phase lag. This phase lag is a source of instability. A model of shock
wave oscillations is shown in the Figure 1.7.

The aerodynamic nonlinearities associated to the unsteady behavior and
wing-tip vortex formation can be modeled by the unsteady vortex lattice method
[36]. A detailed description of the unsteady vortex lattice method is given in the
Appendix D. An example of the wakes obtained by the vortex lattice method is
shown in the Figure 1.8.

When viscosity is taken into account, the flow separation occurs due to

shock-boundary layer interaction. In an incompressible flow, only the laminar flow
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is present. When the flow separation occurs, turbulence appears. The flow
separation results in single DOF flutter, control surface buzz® and buffeting® [49].
At low speeds, the aerodynamic nonlinearities caused by flow separation are
found in dynamic stall. In this case the leading edge separation begins at a
certain critical angle of attack. An example of flow separation is revealed in the
Figure 1.9 [51]. A wing section under normal flight condition is shown in Figure
1.9(a). As the angle of attack increases (see Figure 1.9(b)), the boundary layer
starts to separate. If the angle of attack is increased further, the separation
position moves forward as seen in the Figure 1.9(c).

The aerodynamic nonlinearity that arise from stall has been considered in
several studies [52-58]. For example Gilliatt et al. [52] found that nonlinear modal
interaction of aeroelastic structures can result in the occurrence of internal
resonance. As the free stream speed increases the nonlinear solution reveals a
LCO close to the initial conditions. For the flow speed at which the aeroelastic
frequencies are in 3:1 internal resonance, the root-mean-square amplitude of
plunge degree-of-freedom was found to increase. Near 1:1 internal resonance,
the response grows without limit. It was also found that for an aeroelastic system
with cubic nonlinearity, large response amplitudes were predicted as the system
frequencies pass through a 3:1 internal resonance. Abdel-Rahim et.al. [53] and
Hwang and Fang [54] studied the stall flutter for a cascade of blades used in

turbomachinery. It was found that the flutter of the blade may occur when the

® buzz is the noise made by the vibration of the control surface.
? buffeting is a succession of blows; continued violence, as of winds or waves
(www.hyperdictionary.com)
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stall propagation frequency is close to the natural frequency of the blade. The
influence of structural nonlinearities in addition to stall was analyzed by Sarkar
and Bijl [58]. Period-three oscillations and super-harmonic and quasi-harmonic
responses have been reported. Experiments on stall flutter have been reported in
[59-61].

An investigation of how a nonlinear aerodynamics can affect the
divergence, flutter, and LCO characteristics of a transonic airfoil configuration
was made by Thomas et al. [62]. A computational fluid dynamic (CFD) method
was used to model the nonlinear steady and unsteady transonic flows. A
harmonic balance method in conjunction with the CFD solver was used to
determine the aerodynamics for finite amplitude unsteady excitations of a
prescribed frequency. The nonlinear aerodynamic effects produced a favorable
transonic divergence trend as well as unstable and stable LCO solutions for
flutter models.

Yang and Lee [63] performed transonic aeroelastic analyses for a flap of
airfoil. For the aerodynamic calculation, the Euler's equations were solved by a
finite volume method. The time domain unsteady aerodynamic loads were
transformed in the frequency domain using a transient pulse technique. It was
found that the flutter region increases as the Mach number increases. Also the

instability region increases as the initial flap angle increases (valid for flap angles

smaller than 4°).
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1.3 Structural Modeling
1.3.1 TYPES OF STRUCTURAL NONLINEARITIES

Lee, et al., [49] classified structural nonlinearities as distributed governed
by electrodynamics deformations that affect the whole structure, or concentrated
that act locally and are found in control mechanisms or the connecting parts
between wing, pylon, engine or external stores. The distributed nonlinearities can
be modeled as cubic spring while concentrated nonlinearities can be modeled as
bilinear spring, solid friction, and hysteresis.

Cubic springs can be hardening or softening. A twisted thin wing will
behave as a cubic hardening spring that becomes stiffer as the angle of twist
increases (Figure 1.10a). The effect of buckling can be approximated by a
softening spring whose stiffness decreases when displacement is increased
(Figure 1.10b).

Backlash is the most frequent cause for nonlinearity in power-operated
and spring-tab systems and it can be modeled as bilinear spring (see Figure
1.11). Backlash induces a flat spot nonlinearity in the force displacement
characteristic (Figure 1.11a). If the spring is preloaded, a modified form of the
flat spot appears (Figure 1.11b). Solid friction is another type of structural

nonlinearity. Hysteresis is encountered if both backlash and friction appears.

1.3.2 THE EFFECT OF CONCENTRATED NONLINEARITIES
Concentrated nonlinearity acts locally in control mechanisms or

connecting parts between wing and external stores. This nonlinearity results from
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backlash in linkage elements of the control system, dry friction in control cable
and push rod ducts, kinematic limitation of the control surface deflection, and
application of spring tab systems provided for relieving pilot operation. Breitbach
[64] determined the flutter boundaries for three different configurations
distinguished by different types of nonlinearities in the rudder and aileron control
system of a sailplane. The hysteretic damping was found to result in a
considerable stabilizing effect and increase of flutter speed. Similar effects of
nonlinearities due to friction and backlash on the dynamic behavior of aircraft
were reported by De Ferrari et al [65].

The effects of control system nonlinearities, such as actuator force or
deflection limits, on the performance of an active flutter suppression system were
examined in [66-68]. Reed et al [67] showed that a nonlinear system which is
stable with respect to small disturbances may be unstable with respect to large
ones. Another important feature was that a store mounted on a pylon with low
pitch stiffness can provide a substantial increase in flutter speed and reduce the
dependency of flutter on the mass and inertia of stores relative to that of stiff-
mounted stores. A detailed review of structural and aerodynamic nonlinearities
with more emphasis on concentrated structural nonlinearities is given by Lee et
al [49].

Free-play nonlinearity effects have been the subject several studies [69-
73]. For example, Laurenson and Trn [71] investigated the flutter of a missile with
control surfaces having free-play nonlinearity. At a particular flight speed, the

amplitude of oscillation, caused by external excitation, starts to build up. Due to
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the presence of free-play nonlinearity in combination with increasing amplitude of
oscillation, the effective stiffness of the system increases and the motion
becomes stable at some limited amplitude. Kim and Lee [70] found that
responses involving LCO and chaotic motion are highly influenced by the pitch-
to-plunge frequency ratio in an airfoil with free-play nonlinearity. Experimental
studies [73] of a wing model with free-play nonlinearity in pitch showed the
appearance of double LCO. Alighanbari [69] studied three-degree-of-freedom
airfoil-aileron dynamics with free-play nonlinearity in the aileron hinge moment.
Bifurcation analysis indicated various LCO solutions for velocities well below the
linear flutter boundary. Depending on the initial conditions and air speed, quasi-
periodic and chaotic oscillations were reported for the aileron motion.

A series of papers [74-77] considered the influence of structural non-
linearities, represented by free-play and bilinear, on various types of LCO and
periodic motions. The subsonic unsteady aerodynamic forces were modeled
using the doublet-hybrid method originally proposed by Ueda and Dowell [78].
Zhao and Hu [79] considered similar structural nonlinearities and used unsteady

vortex lattice model to predict the LCO of an airfoil section.

1.3.3 THE EFFECT OF DISTRIBUTED NONLINEARITIES

The analysis of two-dimensional airfoil with cubic stiffness nonlinearities
was conducted in references [80-84]. Lee et al [80] found that the flutter
boundary was dependent on the initial conditions for a soft spring, while for a

hard spring flutter was independent of initial conditions, and both linear and
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nonlinear flutter speeds were identical. Further, LCO was observed for velocities
greater than the flutter speed. A jump phenomenon in the pitch amplitude was
numerically detected by Lee et al [81], and its location was found to depend on
the given initial conditions. A frequency relation was derived by Liu et al [82] who
observed that the frequency and amplitude of limit cycle oscillations do not
depend on the choice of initial conditions. A secondary bifurcation after the
primary Hopf bifurcation was detected by Liu and Dowell [83]. Furthermore,
starting from different initial conditions, the motion may jump from one limit cycle
to another for different values of fluid flow speeds. A chaotic region was found by
Zhao and Yang [84] for certain elastic axis positions, and the chaotic motion
appeared only at air flow speed higher than the linear divergent speed.

Price at al [85] studied the response of a two-dimensional airfoil with
bilinear and cubic stiffness nonlinearities. LCO with period one was obtained at
velocities well below the flutter boundary. In some cases, where the airfoil was
subjected to small pre-loads, the motion is chaotic for both bilinear and cubic
nonlinearities. This was confirmed for cubic nonlinearity using Lyapunov
exponents. Singh and Brenner [86] observed asymmetric LCO for certain values
of flow speed and elastic axis location.

A singular perturbation technique based on normal-form method was used
to analyze the stability of limit cycles of wing-flap flutter [87-89]. For example,
Dessi and Mastroddi [87] analyzed limit-cycle stability reversal via singular
perturbation and wing-flap flutter. A three-degree-of-freedom aeroelastic typical

section with a trailing-edge control surface was modeled by including nonlinear
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springs in torsional stiffness and hinge elastic moment. The numerical analysis
revealed the presence of stable and unstable LCOs, along with stability reversal
in the neighborhood of Hopf bifurcation. Coller and Chamara [88] investigated the
sub-critical and supercritical nature of the flutter Hopf bifurcation of a two-degree-
of-freedom system with nonlinear restoring forces. Under certain conditions, the
instability gave rise to stable LCOs while for other conditions unstable periodic
orbits emerged.

Marzocca et al [90] considered the determination of the sub-critical
aeroelastic response and flutter instability of a two-dimensional wing section. The
analytical model includes the stiffness and damping nonlinearities in plunging and
pitching degrees of freedom. In addition to the aerodynamic loads, an arbitrary
time-dependent external pressure pulse was considered. At zero flow speed the
plunging amplitudes were found slightly larger than those at the small flow
speeds. However, this trend is reversed when the flow speed is further increased
and in such case larger amplitudes are experienced near the flutter speed. For
the flow speed greater than the flutter speed the response becomes unbounded.
Recently, Tang and Dowell [91] examined the influence of geometric structural
nonlinear coupling among the bending deflection, chord-wise bending deflection,
and twist about the deformed axis on flutter speed and LCO of high-aspect-ratio
wings. They found that LCO above and below the perturbation flutter boundary
generally occurs over a limited range of flow speed, depending on initial

conditions.
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A high fidelity tool that accurately predicts LCOs of an aeroelastic system
with combined structural and aerodynamic nonlinearities was developed by
Sheta, et al., [92]. The aeroelastic computations predicted LCO amplitudes and
frequencies in very close agreement with the experimental data. Patil, et al., [93]
presented results obtained for LCOs in high-aspect-ratio wings caused by
structural and aerodynamic nonlinearities. The analysis was based on
geometrically exact structural analysis and finite-state unsteady aerodynamics
with stall. The results indicated that stall limits the amplitude of post-flutter
unstable oscillations. At speeds below the linear flutter speed, LCOs could be
observed if the stable steady state was disturbed by a finite-amplitude
disturbance. A critical disturbance magnitude at a given speed and a critical
speed at a given disturbance magnitude was required to initiate LCOs. The LCO
got more complex with increasing speed. Period doubling was observed at low
speeds and as the speed increased the oscillation lost periodicity and become
chaotic.

The influence of parameter uncertainties on aeroelastic structures as well
as the methods used to solve the systems with parameter uncertainties are

shown in the next paragraph.

1.4 Systems with Parameter Uncertainties

Recent trends of studying structural mechanics involve randomness.

These structures are usually modeled by linear differential equations with random
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coefficients. From a mathematic point of view, a system can be modeled by the

following equation [94]:
Au=f (1.27)

2

where A is a stochastic differential operator, e.g. A:(m%+c%+ k), where

m, ¢, k are random variables, u is the random response and f is the excitation

which can be deterministic or random. The case of deterministic linear operator

A and random excitation f has been widely studied in the literature (e.g. [95-

97]). The case when A is stochastic is more difficult and only approximate
solutions are available. The systems which involve random operators (A) are
called systems with parameter uncertainties.
Parameter uncertainties owe their origin to a number of sources, which
include
(1) randomness in material properties due to variations in material
composition;
(i1) randomness in structural dimensions due to manufacturing variations and
thermal effects;
(iii)) randomness in boundary conditions due to preload and relaxation
variations in mechanical joints;
(iv)  randomness of external excitations.
The major tools for analytical and numerical solutions of systems with

parameter uncertainties are direct Monte Carlo simulation [98-102], perturbation
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method [103-107], and Neumann expansion method [94, 105, 107-110]. These
tools when are combined with deterministic finite element method, are called
stochastic finite element methods.

Due to the large number of samples which require a high computational
time, the Monte Carlo simulation is used mainly to verify other approaches. The
perturbation method and Neumann expansion method proved acceptable results
for small random variation in the material properties. It was found that the
methods are comparable in accuracy but the most efficient solution procedure is
the perturbation finite element method which requires a single simulation.
However, perturbation methods require the system uncertainty to be small

enough to guarantee convergence and accurate results.

1.4.1 STOCHASTIC FINITE ELEMENT METHODS

In this section, the Monte Carlo simulation, perturbation method, and
Neumann expansion method will be briefly described. The methods are chosen
because their popularity and their compatibility with the finite element method.

The methods are based on direct operation on the following equation [94]:
[L(x)+l_[(0t(x,9),x)]u(a(x,@),x)= f(x,e) (1.28)

where L(x) is a deterministic differential operator, H(a(x,e),x) is a differential

operator whose coefficients are zero-mean random processes, a(x,e) is a zero-

mean random process, 0 is a parameter that belongs to the space of random

events, and x is a variable that belongs to the deterministic domain, e.g., D.
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Equation (1.28) is derived from equation (1.27) under the assumption that the
random coefficients which belong to operator A can be decomposed into a
purely deterministic component and a purely random component in the following

way [94]:

a, (x,0)=a,(x)+o(x,0) (1.29)

where a, is a random coefficient which belongs to A, &, is the mathematical
expectation of a , and o, is a zero-mean random process with the same
covariance function as a, .

Before describing the above mentioned methods, it is necessary to
illustrate the Karhunen-Loeve expansion, an expansion of the Fourier type which

is utilized to discretize the continuous random field.

1.4.1.1 Karhunen-Loeve Expansion (K-L)

In finite element modeling, the uncertainties are usually introduced into the
stiffness parameters. These parameters are usually modeled by a Markov'°
random field. One of the major problems of incorporating the random field into
finite element analyses is to deal with abstract spaces which have limited
physical support [94, 107]. The difficulty involves the treatment of random
variables defined on these abstract spaces. Usually the problem is solved by

Monte Carlo simulation which requires a large number of points to be sampled.
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Another way is to discretize the random field into a series of Fourier type called

Karhunen-Loeve expansion.

Let the random field be denoted by the function y(x,6), where 6 is a

parameter that belongs to the space of random events. The random field ;((x,e)

can be expressed by the truncated Karhunen-Loeve (K-L) expansion [94]:
N
x(x,@)=%(x)+2an(9)\/xfn(x) (1.30)
n=1

where 7(x) is the mean value of y(x.,6), 4

n

is some constant, f,(x) is a set of
deterministic functions, and gn(e) is a set of random variables with zero mean

and E[¢,(0),(0)]=3,,, 8, is the Kronecker delta. Ghanem and Spanos [94]

showed that 4, and f, (x) are given by the solution of the integral equation
[eeox) f0x)dx, =2, ,(x) 1.31)
D

where C(x,x,) is the covariance kernel of the random field y(x,6).

Ghanem and Spanos [94] and Loeve [111] showed that for a Gaussian
process the K-L expansion is convergent. For a one-dimensional Gaussian

process, the 