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CHAPTER 1 

A REVIEW OF LITERATURE AND BACKGROUND 

1.1 Introduction 

Flutter of aeroelastic structures refers to the interaction between 

aerodynamic, inertia, and elastic forces. It is characterized by unstable 

oscillations at a critical airflow speed. Above that flutter speed, the oscillations 

grow until the amplitude reaches a value above which the nonlinearities bring the 

flutter into limit cycle oscillations (LCO). The role of nonlinearities on the flutter 

boundary depends on the system parameters, airflow conditions, speed, 

turbulence, gust, etc. The coupling of several degrees of freedom (DOF) is also 

an essential feature of flutter. With reference to the flutter of a cantilever wing, 

the coupling between bending and torsional deflection is predominant.  

An accurate analytical or numerical modeling requires a strong 

background of aerodynamic loading and its interaction with structural mechanics. 

For this reason this chapter provides different approaches of describing 

aerodynamic forces and moments. This overview is followed by different 

combined models of structural-flow interaction. Based on findings that will be 

covered in chapter 2 (stabilization of the wing under parametric excitation), a 

review of stabilization of different mechanical systems under parametric 

excitation will be presented.  

In some cases two identical aeroelastic structures may exhibit different 

flutter characteristics. For example, the flutter speed may not be the same for 

each structure. The main reason for this unexpected observation owes its origin 
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to the structure parameter uncertainties. This chapter will also provide an 

assessment of the influence of parameter uncertainties on aeroelastic structures 

and will identify the unresolved problems. 

 

 1.2 Aerodynamic Modeling 

 Different approaches are developed in the literature to determine the 

aerodynamic loading acting on aeroelastic structures. These methods are either 

analytical or numerical. The analytical approaches are based on restricted 

assumptions which lead to linear descriptions. Numerical schemes are versatile 

and include flexibility to account for the nonlinear flow and provide more realistic 

representation of aerodynamic loading. The next subsections briefly describe the 

two approaches. 

  

1.2.1 ANALYTICAL SCHEMES (LINEAR) 

The analysis of aeroelastic flutter usually depends on the methods of 

aerodynamic loading. Linear modeling is based on linear representations of 

aerodynamic, elastic, and inertia forces. Nonlinear modeling, on the other hand, 

considers the inherent nonlinearity of any of these forces or combination of them. 

Ashley [1] presented the state-of-the-art up to 1978 of solved and unsolved 

problems of aeroelastic stability. Resolved problems included the torsional and 

flexural-torsional divergence of conventional lifting surfaces, and subsonic and 

supersonic flutter of isolated lifting surfaces. The unresolved problems included 

deterministic and stochastic flutter of nonlinear aeroelastic structures in the 
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presence of time-varying in-plane excitations. This in addition to the stochastic 

flutter of linear and nonlinear aeroelastic structures in transonic and supersonic 

flow regimes.  

For the calculation of the aerodynamic loads, several analytical theories 

have been developed. These include (a) the Wagner theory [2-4], (b) the 

modified strip analysis [5], (c) the modified two-dimensional loading [6], (d) the 

subsonic kernel function [7], and (e) the rectangular wing theory [8]. Among the 

methods stated above, the first two (a) and (b) are the most utilized in aeroelastic 

analytical formulations. Also the modified strip analysis (b) was frequently 

adopted to calculate the flutter speed in industry up to the late 1960’s. Because 

of that, only these two methods will be discussed in detail below. In the analytical 

theories the lift force and aerodynamic moment are eventually obtained in a 

closed form. 

It is believed that the early analysis of wing flutter in an incompressible 

subsonic flow was based on a quasi-stationary formulation. Theodorsen [9] and 

Wagner [2] developed non-stationary formulations that account for the lag effects 

of the unsteady aerodynamics for different frequencies. Later, Theodorsen and 

Garrick [10] conducted an experimental investigation to examine the validity of 

the predicted flutter speed and frequency.   

 The Wagner theory and the modified strip theory give the unsteady 

aerodynamic loads for two-dimensional incompressible potential flow at subsonic 

speeds. The modified strip theory, based on Theodorsen’s work [9], includes 

alterations in the expressions of lift, moment, and circulation function in order to 
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approximate the effects of the span finite length. In both theories the 

aerodynamic loads contain a non-circulatory flow component that contributes to 

the lift and moment with a virtual mass and a circulatory component that takes 

into account the vortex caused by the wake. The non-circulatory component is 

the same in both theories but the circulatory component uses the Wagner’s 

function [2] in the first case and Theodorsen’s function [9] in the second case. 

The aerodynamic loads according to Theodorsen’s theory can be obtained from 

Wagner’s theory under the assumption of harmonic motion of the wing.  

 The derivations of the unsteady aerodynamic loads using Wagner’s theory 

as they are described by Fung [4] are presented in this section. First we consider 

a two-degree-of-freedom airfoil describing a vertical translation u  (plunge), taken 

positive downward, and a rotation α  (pitch angle) about the elastic axis located 

at a distance 1 abδ =  from the mid-chord, positive nose up as shown in Figure 

1.1. Assuming two-dimensional flow with constant flow speed U∞ , the lift force is 

composed of a circulatory part and non-circulatory part which is caused by 

“apparent mass” forces. 

 For plunge and pitch oscillations, the circulation1 about the airfoil is 

determined by the downwash2 velocity at the ¾-chord point from the leading 

edge of the airfoil. The downwash at ¾-chord point due to both plunge and pitch 

contains: 

a) a uniform downwash 1w  corresponding to the pitch,  1 sinw U U∞ ∞= α α , 

where  U∞  is the speed of undisturbed flow; 

                                            

1 Circulation is the line integral of fluid velocity around a closed curve 
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b)  a uniform downwash 2w  due to vertical translation, 2
Udu dsw u

ds dt b
∞ ′= =  

U u∞ ′= , where prime denotes a differentiation with respect to the non-

dimensional time /s U t b∞= , /u u b=  the non-dimensional plunge, t  is 

dimensional time, and b  is the half-chord; 

c) a non-uniform downwash 3w  due to d
dt
α , its value at the ¾-chord being   

3
1 1
2 2

d dsw a b a U
ds dt ∞
α⎛ ⎞ ⎛ ⎞ ′= − = − α⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, where d

ds
α′α = . 

 
Adding a), b), and c), the total downwash ( ), ,w u tα  is:  

 

( ) ( ) ( ) ( )1 2 3
1, ,
2

w u t w w w U t u t a b t∞
⎛ ⎞α = + + = α + + − α⎜ ⎟
⎝ ⎠

      (1.1) 

 
This expression can be written in terms of the non-dimensional time parameter s  

as: 

 

( ) ( ) ( ) ( )1, ,
2

w u s U s U u s a U s∞ ∞ ∞
⎛ ⎞′ ′α = α + + − α⎜ ⎟
⎝ ⎠

    (1.2) 

 
In the time interval ( )0 0 0,s s ds+ , the downwash is increased by ( )0 0/dw s ds . If 0ds  

is sufficiently small, it may be regarded as impulsive increment and the 

circulatory lift per unit span is given by [4]: 

 

                                                                                                                                  

2 Downwash refers to the flow of air behind a wing. The downwash behind a wing is a 
consequence of the wing trailing vortex system. (www.wikipedia.com) 
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( ) ( ) ( )0
1 0 0

0

, ,
, , 2

dw u s
dL u s bU s s ds

ds∞ ∞

α
α = πρ φ − , over 0ds  for 0s s≥      (1.3) 

 
where ∞ρ is the air density, ( )sφ  is Wagner’s function which describes the growth 

of circulation about the airfoil due to the sudden increase of downwash. 

Approximate expression for the Wagner’s function is given by Jones [11]:  

 
( ) 1 2

1 21 s ss e e−ε −εφ = −ψ −ψ            (1.4) 

 
where 1 0.165ψ = , 2 0.335ψ = , 1 0.0455ε = , 2 0.3ε = . 

 The total circulatory lift per unit span at time s  is obtained by integrating 

equation (1.3) with respect to s :  

 

 ( ) ( ) ( )0
1 0 0

0

, ,
, , 2

s dw u s
L u s bU s s ds

ds∞ ∞
−∞

α
α = πρ φ −∫           (1.5) 

 
If the motion starts from 0s = , equation (1.5) becomes: 

 

( ) ( ) ( ) ( )0
1 0 0 0

00

, ,
, , 2

s dw u s
L u s bU w s s s ds

ds∞ ∞

⎡ ⎤α
α = πρ φ + φ −⎢ ⎥

⎣ ⎦
∫              (1.6) 

 

where ( ) ( ) ( )0
10 0 0
2

w U u a∞

⎛ ⎞⎛ ⎞′ ′= α + + − α⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is the initial value of downwash. 

 The lift and moment of the non-circulatory flow include the following 

components: 

a) a lift force having the center of pressure at the mid-chord generated by 

apparent mass 2b∞πρ : 
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( ) ( )( ) ( ) ( )( )2 2

2L b u t ab t bU u s a s∞ ∞ ∞ ′′ ′′= πρ − α = πρ − α       (1.7) 

 
b) a lift force (of centrifugal nature) having the center of pressure at ¾-chord 

point generated also by apparent mass 2b∞πρ : 

 
( ) ( )2 2

3L b U t bU s∞ ∞ ∞ ∞ ′= πρ α = πρ α     (1.8) 

 
c) a nose down moment generated by apparent moment of inertia ( )2 2 / 8b b∞ρ π : 

 

( ) ( )4 2 2 21 1
8 8

M b U t b U sα ∞ ∞ ∞ ∞ ′′= −πρ α = −πρ α           (1.9) 

 
 The total lift per unit span is given by: 

 
( ) 1 2 3, ,L u s L L Lα = + +          (1.10) 

 
The total moment per unit span about the elastic axis is given by: 

 

( ) 1 2 3
1 1, ,
2 2

M u s a bL abL a bL Mα
⎛ ⎞ ⎛ ⎞α = + + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (1.11) 

 
Combining (1.2) with (1.6), and introducing the full expression for each 

component, the aerodynamic lift per unit span become: 

 
( ) ( ) ( ) ( )( ) ( )2 2, , 2 (0) 0L u s bU u s a s s bU u∞ ∞ ∞ ∞′′ ′′ ′ ′⎡α = πρ − α +α + πρ α +⎣  

( ) ( )1 0
2

a s⎤⎛ ⎞ ′+ − α φ⎜ ⎟ ⎥⎝ ⎠ ⎦
( ) ( ) ( )2

0 0 0 0 0
0

12 ( )
2

s

bU s s s u s a s ds∞ ∞

⎛ ⎞⎛ ⎞′ ′′ ′′+ πρ φ − α + + − α⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫  

(1.12) 
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The aerodynamic moment about the elastic axis, per unit span is given by: 

 

( ) ( ) ( ) ( ) ( )2 2 1 1, ,
2 8

M u s b U a u s a s a s s∞ ∞

⎛ ⎞⎛ ⎞′′ ′′ ′ ′′⎡ ⎤α = πρ − α − − α − α⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠
 

( ) ( ) ( )2 2 1 12 (0) 0 0
2 2

b U a u a s∞ ∞

⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′+ πρ + α + + − α φ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

( ) ( ) ( )2 2
0 0 0 0 0

0

1 12 ( )
2 2

s

b U a s s s u s a s ds∞ ∞

⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′′ ′′+ πρ + φ − α + + − α⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∫   (1.13) 

 
Assuming harmonic motion of the wing, the aerodynamic loads given in 

equations (1.12) and (1.13) according to the Theodorsen’s theory3 are: 

 
( ) ( ) ( ) ( )2 2, , 2 , ,L u t U bB k w u t b u ba b U∞ ∞ ∞ ∞ ∞α = πρ α + πρ − α + πρ α   (1.14) 

 

( ) ( ) ( )2 1, , 2 , ,
2

M u t U b a B k w u t∞ ∞
⎛ ⎞α = πρ + α⎜ ⎟
⎝ ⎠

 

( )
4

3 31
2 8

bab u ba a b U ∞
∞ ∞ ∞

πρ⎛ ⎞+ πρ − α − − πρ α − α⎜ ⎟
⎝ ⎠

  (1.15) 

 
where ( ), ,w u tα is the downwash and its expression is given in the equation (1.1), 

( )B k  is called the Theodorsen's or circulation function, which is a function of the 

reduced frequency, /k b U∞= ω  (ω  is the natural frequency of the wing structure). 

Generally, the Theodorsen’s function is a complex function whose real part 

modifies the load component in-phase with the angle of attack, while its 

imaginary part accounts for the out-of-phase load component. Jones (see, e.g. 

                                            

3 Note that the aerodynamic loads given by equations (1.14) and (1.15) are in dimensional form 
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[4, 11]) introduced an approximation, stated below, to Theodorsen’s function in 

order to predict the wing dynamic behavior in unsteady aerodynamic field:  

 
( ) ( ) ( )B k F k iG k= +      (1.16) 

 
where  

( )
2 2

2 2

0.165 0.3351
0.00207 0.09

k kF k
k k

= − −
+ +

 and ( ) 2 2

0.0075 0.1005
0.00207 0.09

k kG k
k k

= − −
+ +

 

 
Although it would seem straightforward to use the real and imaginary parts 

directly in the flutter analysis, this procedure was found to give poor results in 

comparison with experimental results as reported by Yates [5]. The large phase 

angles of complex circulation functions associated with two-dimensional flow 

were found to be inappropriate for three-dimensional wings. Yates found that if 

the phase angles remained moderately small the calculated flutter speed would 

be relatively insensitive to changes in the magnitude of the imaginary part.  

The real part of the circulation function is usually given in terms of the first 

eigenvalue of the coupled modes and Mach number for different values of a 

frequency parameter (non-dimensional flow speed). Small disturbances to the 

flow are assumed, which imply that the resultant fluid speed differs only slightly 

from the free stream speed. 

 

1.2.2 NUMERICAL SCHEMES 

 There are two ways to numerically model the aerodynamic loads. One 

way is to model the entire flow by one of the computational fluid dynamics 
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schemes based on finite difference or finite volume methods to directly solve the 

fluid flow equations. This approach is the most accurate yet and it is considered 

the ultimate approach. Unfortunately the method is very expensive in 

computational time because it needs to grid the entire flow. Another way to 

numerically model the aerodynamic loads is to use potential flow models based 

on singularity elements. Singularity element models are based on a general 

method for calculating the incompressible potential flow about arbitrary body 

shapes [12-24]. A general description of singularity element models is given 

below, starting with the fluid field equations. 

 

1.2.2.1 Fluid Field Equations 

In an inviscid, incompressible and irrotational4 flow, the velocity field can 

be expressed in terms of a potential function Φ  whose gradient gives the flow 

velocity vector as (e.g. [23]): 

 
= ΦV ∇             (1.17) 

 

where V  is the fluid velocity vector, and ˆˆ ˆi j k
x x x
∂ ∂ ∂

+ +
∂ ∂ ∂

∇ = , where î , ĵ , k̂  are 

the unit vectors of Cartesian coordinates x , y , and z  respectively. In this case 

the governing equation for the velocity field is given by the continuity equation 

(Laplace’s equation) (see Appendix D for further details): 

 

                                            

4 In an irrotational flow the fluid does not move in circular or helical motions; it does not form 
vortices (www.wikipedia.com) 
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2 0Φ =∇              (1.18a) 

 

If the flow is passing over a solid body the following boundary condition is 

imposed: 

 
0Φ⋅ =n∇              (1.18b) 

 
where  n  represents the unit vector normal to the solid body. Another condition 

requires that the resultant velocity of the flow at points far away from the solid 

boundary has to be equal to the undisturbed velocity of the flow. 

 Now it is necessary to define some elementary flows such as: uniform 

flow, source or sink, doublet, and potential vortex [23]:  

• A two dimensional uniform flow parallel to the x-direction is shown in 

Figure 1.2. The potential function for this flow in cylindrical coordinates is: 

 
cosU r∞Φ = θ      (1.19) 

 
where r  is the radial coordinate from the origin and θ  is the angle made 

with the x-axis. 

• A source is defined as a point from which fluid is generated and flows 

radially outward as seen in Figure 1.3. The potential function for a two-

dimensional source centered at the origin is given by:  

 

ln
2
K rΦ =
π

              (1.20) 
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where K  is the source’s strength. As we can see from equation (1.20), 

there is a singularity at the source’s center ( 0r = ). For this reason a 

source is called singularity. 

• A sink is a negative source. This implies the fluid flows into a sink along 

radial streamlines5. The potential function is given by  

 

ln
2
K rΦ = −
π

              (1.21) 

 
• A doublet (see Figure 1.4) is the singularity which results when a source 

and a sink of equal strength approach each other such that the product of 

their strength ( K ) and their distance apart remains constant in the limit as 

the distance between them approaches zero. The line along which the 

approach is made is called the axis of the doublet and it has a positive 

direction when oriented from sink to source. The potential for a doublet is 

given by: 

 

cosB
r

Φ = θ             (1.22) 

 
where B  is a constant. 

• A potential vortex is a singularity about which fluid flows with concentric 

streamlines as seen in Figure 1.5. The potential for a vortex centered at 

the origin is given by: 

                                            

5 Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the 
flow (www.wikipedia.com). 
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2
Γθ

Φ = −
π

            (1.23) 

 

where Γ , which is called circulation, is the strength of the vortex.  

The singularity element methods use singularities distribution over the 

wing body and calculates this distribution as the solution of an integral equation 

[25]. Most of these methods specify a source distribution of variable strength 

(e.g. source-panel models), a dipole distribution of variable strength (e.g. 

doublet-lattice, and doublet-panel methods), or a vortex distribution of variable 

circulation (e.g. vortex-lattice methods, and vortex-panel methods). From the 

above mentioned methods, doublet-lattice and vortex-lattice methods have been 

extensively used over the years in the calculation of the aerodynamic loads in 

potential flows. 

An example of discretization using singularity elements is presented in 

Figure 1.6(a). In this case the singularities are vortex rings used by vortex-lattice 

and vortex-panel methods [24]. Some typical ring elements are shown in Figure 

1.6(b) (where L.E. is wing leading edge, T.E. is wing trailing edge, U∞  is speed of 

airflow, Γ  is circulation around a vortex line, and collocation points are the points 

where the lift force is calculated).  

The purpose of the singularity elements methods is to find the velocity 

field V  needed in the Bernoulli’s equation to calculate the airflow pressure 

necessary to compute the aerodynamic loads. The Bernoulli’s equation in 
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unsteady form for a point P , which belongs to discretized wing (see Figure 1.6b), 

is given by: 

 
2 21 1

2 2
P

P
P

p pV U
t

∞
∞

∞

∂Φ
+ + = +

∂ ρ ρ
                               (1.24) 

 
where Φ  is the total velocity potential function, PV  is the fluid velocity at point P  

in the flow, p  is the pressure at point P , ρ  is the fluid density at point P , p∞   is 

the pressure of the undisturbed airflow, U∞  is speed of undisturbed airflow. The 

nonlinearity in the flow is given by the unsteady term 
t

∂Φ
∂

 and the 21
2 PV  term. 

Some models drop the unsteady term and linearize the 21
2 PV  term in order to 

simplify the model.  

Next step is to calculate the pressure difference across the airfoil as 

follows: 

 
P PL PUp p p∆ = −             (1.25) 

 
where PLp  is the pressure below the wing body and PUp  is the pressure above 

the wing body. The pressures PLp  and PUp  are calculated using Bernoulli’s 

equation (1.24). 

 The lift force, PL  (see Figure 1.6b), for a discrete point P  is then obtained 

integrating the pressure as follows: 

 
P P PL p A= ∆ ∆       (1.26) 
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where PA∆  is the area of the element that encloses P . A detailed description of 

the aerodynamic loads obtained to the unsteady vortex lattice method is given in 

the Chapter 3. 

 

1.2.2.2 Vortex Lattice Method 

Early developments of numerical algorithms based on vortex lattice 

method were done by several authors [26-28]. For example Mook and Maddox 

[26] modified the vortex lattice method to include the effects of leading-edge 

separation and this modified method was applied to calculate the aerodynamic 

loads on high swept delta wings.  Asfar, et al. [28] developed a numerical method 

that predicts the potential flow-field past arbitrary bodies. The method uses a 

combination of a vortex lattice and sources. For blunt bodies, the method 

appeared to be superior to either vortex lattice or the sources acting alone while 

for slender bodies there is no visible advantage comparing to vortex lattice alone, 

and vortex lattice appears to be superior to the sources. 

A general unsteady vortex lattice method was developed by 

Konstadinopoulos, et al. [29]. The method is an extension of the vortex-lattice 

technique and is not limited by aspect ratio, camber, or angle of attack, as long 

as vortex breakdown does not occur above the surface of the wing and 

separation occurs only along sharp edges. The procedure treats steady flows 

more efficiently than the specialized steady flow vortex lattice. The comparison 

with experimental results showed that the developed procedure accurately 

predicted the aerodynamic loads.  
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Since then, the general unsteady vortex lattice method was used in many 

other studies [25, 30-38]. For example, Strganac and Mook [34] coupled the 

equations of motion of the structure with the governing equations of the fluid 

obtained by the general unsteady vortex lattice method and treated the fluid and 

structure as a single system which was integrated by a predictor-corrector 

algorithm. The results predict simultaneously and interactively the motion of the 

structure and the fluid in the time domain. Two models were used to demonstrate 

the technique: a rigid wing on an elastic support and an elastic wing rigidly 

supported at the root chord. Nuhait and Mook [35] included the steady and 

unsteady ground effects in the wing modeling. It was found that the aerodynamic 

coefficients increase near the ground and the ground effect increases when the 

aspect ratio increases. Also the steady ground effect increases the rolling 

moment and side force.  

Preidikman and Mook [36] found that when the speed is low, the 

responses to initial disturbances contain many frequencies and decay. As the 

speed or the angle of attack increases the responses become more organized 

(energy concentrates around a few frequencies). It appeared that the flutter is a 

supercritical Hopf bifurcation6. At and above the critical flutter speed LCO were 

encountered. The amplitudes of the LCOs grew as the speed increased. Then 

LCO experienced a secondary supercritical Hopf bifurcation and become 

unstable.  

                                            

6 Supercritical Hopf bifurcation is characterized by connecting the static equilibria with periodic 
motion in a branching form as one of the system control parameters reaches a critical value. 
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Luton and Mook [37] implemented a feedback control system to suppress 

the flutter. The results showed that the suppression of flutter by means of active 

control is possible at velocities well beyond the flutter speed and that limit cycle 

oscillations might exist near flutter speed. To suppress flutter, Hall [38] used a 

classical linear control strategy based on proportional-integral (PI) feedback and 

a novel nonlinear controller based on the phenomenon of saturation that exists 

as a result of a specific internal resonance. It was shown that linear control 

method provides excellent flutter suppression and probably gust-load alleviation 

while the nonlinear controller is only effective when the controller is actively tuned 

to the structural response.  

Soviero and Bortolus [39] and Soviero [40] developed a numerical method 

to calculate the unsteady pressure distribution on harmonically oscillating lifting 

surfaces in subsonic flow. The method is a generalization of the vortex lattice 

method applied to a two-dimensional case of a harmonically oscillating plate. The 

unsteady vortex lattice method is also used in some commercial computer codes 

such as HESS, VSAERO, QUADPAN, MCAERO, and PAN AIR [25]. 

 

1.2.2.3 Doublet Lattice Method 

The doublet lattice method was the primary method used in industry to 

predict flutter for the last 30 years. It replaced the modified strip theory [5] which 

formed the basis for the flutter in the late 1960s. A survey up to 1971 of 

developments of the vortex- and doublet- lattice methods in steady and 

oscillatory motion at subsonic speeds was made by Kalman, et al. [41]. A review 
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of the doublet lattice method as well as the status of the unsteady aerodynamic 

prediction in industry was made by Yurkovich [42]. 

An early development of the doublet lattice method was done by Albano 

and Rodden [43] who obtained approximate solutions for the aerodynamic loads 

by idealizing the wing surface as a set of lifting elements which are short line 

segments of acceleration-potential doublets. Load on each element is 

determined by satisfying the normal velocity boundary condition at a set of points 

on the surface (normal velocity must be zero at the boundary).  

Later, Rodden, et al. [44] modified the doublet lattice method to extend its 

frequency limits for applications to higher frequency flutter. A hybrid doublet-

lattice / double-point method was developed by Eversman and Pitt [45]. The 

hybrid code handle unequal strip widths and nonparallel intersecting lifting 

surfaces and increases the computational efficiency in comparison to classical 

doublet lattice code. Also two quasi-doublet-lattice methods for oscillating thin 

airfoils in subsonic flow were developed by Ando and Ichikawa [46]. One method 

contain a special device for a chord-wise logarithmic singularity resulting from the 

kernel function while the other does not. It was shown the device drastically 

improves the convergence of the solution. 

An application of the doublet lattice method to delta wings was given by 

van Zyl [47]. A generalization of a doublet lattice method was used by Edwards 

and Wieseman [48] to calculate the root loci7 for the wing model for 

                                            

7 In control theory, the root locus is the locus of the poles of a transfer function as the system gain 
is varied on some interval (www.wikipedia.com). 
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incompressible flow conditions. The scope of this research was to illustrate the 

nature of the flutter and divergence instabilities.  

The sources of the aerodynamic nonlinearities will be discussed in the 

following paragraph. 

 

1.2.2.4 Sources of Aerodynamic Nonlinearities 

A good description of aerodynamic nonlinearities was given by Lee, et al., 

[49]. The aerodynamic nonlinearities are caused by the unsteady forces, wing-tip 

vortex formation, or flow separation. If the flow is assumed inviscid so the flow 

separation cannot take place, the presence of shock waves in transonic flow 

generates unsteady forces that destabilize the airfoil pitching motion and affect 

the bending-torsional flutter by lowering the flutter speed. Ashley [50] showed 

that the shock waves have an oscillatory motion in addition to the wing oscillatory 

motion. Between the motion of the shock wave and the motion of the wing there 

is a large phase lag. This phase lag is a source of instability. A model of shock 

wave oscillations is shown in the Figure 1.7.  

The aerodynamic nonlinearities associated to the unsteady behavior and 

wing-tip vortex formation can be modeled by the unsteady vortex lattice method 

[36]. A detailed description of the unsteady vortex lattice method is given in the 

Appendix D. An example of the wakes obtained by the vortex lattice method is 

shown in the Figure 1.8.  

When viscosity is taken into account, the flow separation occurs due to 

shock-boundary layer interaction. In an incompressible flow, only the laminar flow 
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is present. When the flow separation occurs, turbulence appears. The flow 

separation results in single DOF flutter, control surface buzz8 and buffeting9 [49]. 

At low speeds, the aerodynamic nonlinearities caused by flow separation are 

found in dynamic stall. In this case the leading edge separation begins at a 

certain critical angle of attack. An example of flow separation is revealed in the 

Figure 1.9 [51]. A wing section under normal flight condition is shown in Figure 

1.9(a). As the angle of attack increases (see Figure 1.9(b)), the boundary layer 

starts to separate. If the angle of attack is increased further, the separation 

position moves forward as seen in the Figure 1.9(c). 

The aerodynamic nonlinearity that arise from stall has been considered in 

several studies [52-58]. For example Gilliatt et al. [52] found that nonlinear modal 

interaction of aeroelastic structures can result in the occurrence of internal 

resonance. As the free stream speed increases the nonlinear solution reveals a 

LCO close to the initial conditions. For the flow speed at which the aeroelastic 

frequencies are in 3:1 internal resonance, the root-mean-square amplitude of 

plunge degree-of-freedom was found to increase. Near 1:1 internal resonance, 

the response grows without limit. It was also found that for an aeroelastic system 

with cubic nonlinearity, large response amplitudes were predicted as the system 

frequencies pass through a 3:1 internal resonance. Abdel-Rahim et.al. [53] and 

Hwang and Fang [54] studied the stall flutter for a cascade of blades used in 

turbomachinery. It was found that the flutter of the blade may occur when the 

                                            

8 buzz is the noise made by the vibration of the control surface. 
9 buffeting is a succession of blows; continued violence, as of winds or waves 
(www.hyperdictionary.com) 
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stall propagation frequency is close to the natural frequency of the blade. The 

influence of  structural nonlinearities in addition to stall was analyzed by Sarkar 

and Bijl [58]. Period-three oscillations and super-harmonic and quasi-harmonic 

responses have been reported. Experiments on stall flutter have been reported in 

[59-61].  

An investigation of how a nonlinear aerodynamics can affect the 

divergence, flutter, and LCO characteristics of a transonic airfoil configuration 

was made by Thomas et al. [62]. A computational fluid dynamic (CFD) method 

was used to model the nonlinear steady and unsteady transonic flows. A 

harmonic balance method in conjunction with the CFD solver was used to 

determine the aerodynamics for finite amplitude unsteady excitations of a 

prescribed frequency. The nonlinear aerodynamic effects produced a favorable 

transonic divergence trend as well as unstable and stable LCO solutions for 

flutter models. 

Yang and Lee [63] performed transonic aeroelastic analyses for a flap of 

airfoil. For the aerodynamic calculation, the Euler's equations were solved by a 

finite volume method. The time domain unsteady aerodynamic loads were 

transformed in the frequency domain using a transient pulse technique.  It was 

found that the flutter region increases as the Mach number increases. Also the 

instability region increases as the initial flap angle increases (valid for flap angles 

smaller than 4 ).  
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1.3 Structural Modeling 

1.3.1 TYPES OF STRUCTURAL NONLINEARITIES 

Lee, et al., [49] classified structural nonlinearities as distributed governed 

by electrodynamics deformations that affect the whole structure, or concentrated 

that act locally and are found in control mechanisms or the connecting parts 

between wing, pylon, engine or external stores. The distributed nonlinearities can 

be modeled as cubic spring while concentrated nonlinearities can be modeled as 

bilinear spring, solid friction, and hysteresis.  

Cubic springs can be hardening or softening. A twisted thin wing will 

behave as a cubic hardening spring that becomes stiffer as the angle of twist 

increases (Figure 1.10a). The effect of buckling can be approximated by a 

softening spring whose stiffness decreases when displacement is increased 

(Figure 1.10b).  

Backlash is the most frequent cause for nonlinearity in power-operated 

and spring-tab systems and it can be modeled as bilinear spring (see Figure 

1.11). Backlash induces a flat spot nonlinearity in the force displacement 

characteristic (Figure 1.11a).  If the spring is preloaded, a modified form of the 

flat spot appears (Figure 1.11b). Solid friction is another type of structural 

nonlinearity. Hysteresis is encountered if both backlash and friction appears.  

 

1.3.2 THE EFFECT OF CONCENTRATED NONLINEARITIES 

Concentrated nonlinearity acts locally in control mechanisms or 

connecting parts between wing and external stores. This nonlinearity results from 
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backlash in linkage elements of the control system, dry friction in control cable 

and push rod ducts, kinematic limitation of the control surface deflection, and 

application of spring tab systems provided for relieving pilot operation. Breitbach 

[64] determined the flutter boundaries for three different configurations 

distinguished by different types of nonlinearities in the rudder and aileron control 

system of a sailplane. The hysteretic damping was found to result in a 

considerable stabilizing effect and increase of flutter speed. Similar effects of 

nonlinearities due to friction and backlash on the dynamic behavior of aircraft 

were reported by De Ferrari et al [65].  

The effects of control system nonlinearities, such as actuator force or 

deflection limits, on the performance of an active flutter suppression system were 

examined in [66-68]. Reed et al [67] showed that a nonlinear system which is 

stable with respect to small disturbances may be unstable with respect to large 

ones. Another important feature was that a store mounted on a pylon with low 

pitch stiffness can provide a substantial increase in flutter speed and reduce the 

dependency of flutter on the mass and inertia of stores relative to that of stiff-

mounted stores. A detailed review of structural and aerodynamic nonlinearities 

with more emphasis on concentrated structural nonlinearities is given by Lee et 

al [49]. 

Free-play nonlinearity effects have been the subject several studies [69-

73]. For example, Laurenson and Trn [71] investigated the flutter of a missile with 

control surfaces having free-play nonlinearity. At a particular flight speed, the 

amplitude of oscillation, caused by external excitation, starts to build up. Due to 
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the presence of free-play nonlinearity in combination with increasing amplitude of 

oscillation, the effective stiffness of the system increases and the motion 

becomes stable at some limited amplitude. Kim and Lee [70] found that 

responses involving LCO and chaotic motion are highly influenced by the pitch-

to-plunge frequency ratio in an airfoil with free-play nonlinearity. Experimental 

studies [73] of a wing model with free-play nonlinearity in pitch showed the 

appearance of double LCO. Alighanbari [69] studied three-degree-of-freedom 

airfoil-aileron dynamics with free-play nonlinearity in the aileron hinge moment. 

Bifurcation analysis indicated various LCO solutions for velocities well below the 

linear flutter boundary. Depending on the initial conditions and air speed, quasi-

periodic and chaotic oscillations were reported for the aileron motion.  

A series of papers [74-77] considered the influence of structural non-

linearities, represented by free-play and bilinear, on various types of LCO and 

periodic motions. The subsonic unsteady aerodynamic forces were modeled 

using the doublet-hybrid method originally proposed by Ueda and Dowell [78]. 

Zhao and Hu [79] considered similar structural nonlinearities and used unsteady 

vortex lattice model to predict the LCO of an airfoil section. 

 

1.3.3 THE EFFECT OF DISTRIBUTED NONLINEARITIES 

The analysis of two-dimensional airfoil with cubic stiffness nonlinearities 

was conducted in references [80-84]. Lee et al [80] found that the flutter 

boundary was dependent on the initial conditions for a soft spring, while for a 

hard spring flutter was independent of initial conditions, and both linear and 
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nonlinear flutter speeds were identical. Further, LCO was observed for velocities 

greater than the flutter speed. A jump phenomenon in the pitch amplitude was 

numerically detected by Lee et al [81], and its location was found to depend on 

the given initial conditions. A frequency relation was derived by Liu et al [82] who 

observed that the frequency and amplitude of limit cycle oscillations do not 

depend on the choice of initial conditions. A secondary bifurcation after the 

primary Hopf bifurcation was detected by Liu and Dowell [83]. Furthermore, 

starting from different initial conditions, the motion may jump from one limit cycle 

to another for different values of fluid flow speeds. A chaotic region was found by 

Zhao and Yang [84] for certain elastic axis positions, and the chaotic motion 

appeared only at air flow speed higher than the linear divergent speed. 

Price at al [85] studied the response of a two-dimensional airfoil with 

bilinear and cubic stiffness nonlinearities. LCO with period one was obtained at 

velocities well below the flutter boundary. In some cases, where the airfoil was 

subjected to small pre-loads, the motion is chaotic for both bilinear and cubic 

nonlinearities. This was confirmed for cubic nonlinearity using Lyapunov 

exponents. Singh and Brenner [86] observed asymmetric LCO for certain values 

of flow speed and elastic axis location. 

A singular perturbation technique based on normal-form method was used 

to analyze the stability of limit cycles of wing-flap flutter [87-89]. For example, 

Dessi and Mastroddi [87] analyzed limit-cycle stability reversal via singular 

perturbation and wing-flap flutter. A three-degree-of-freedom aeroelastic typical 

section with a trailing-edge control surface was modeled by including nonlinear 
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springs in torsional stiffness and hinge elastic moment. The numerical analysis 

revealed the presence of stable and unstable LCOs, along with stability reversal 

in the neighborhood of Hopf bifurcation. Coller and Chamara [88] investigated the 

sub-critical and supercritical nature of the flutter Hopf bifurcation of a two-degree-

of-freedom system with nonlinear restoring forces. Under certain conditions, the 

instability gave rise to stable LCOs while for other conditions unstable periodic 

orbits emerged.   

Marzocca et al [90] considered the determination of the sub-critical 

aeroelastic response and flutter instability of a two-dimensional wing section. The 

analytical model includes the stiffness and damping nonlinearities in plunging and 

pitching degrees of freedom. In addition to the aerodynamic loads, an arbitrary 

time-dependent external pressure pulse was considered. At zero flow speed the 

plunging amplitudes were found slightly larger than those at the small flow 

speeds. However, this trend is reversed when the flow speed is further increased 

and in such case larger amplitudes are experienced near the flutter speed. For 

the flow speed greater than the flutter speed the response becomes unbounded. 

Recently, Tang and Dowell [91] examined the influence of geometric structural 

nonlinear coupling among the bending deflection, chord-wise bending deflection, 

and twist about the deformed axis on flutter speed and LCO of high-aspect-ratio 

wings. They found that LCO above and below the perturbation flutter boundary 

generally occurs over a limited range of flow speed, depending on initial 

conditions. 
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 A high fidelity tool that accurately predicts LCOs of an aeroelastic system 

with combined structural and aerodynamic nonlinearities was developed by 

Sheta, et al., [92]. The aeroelastic computations predicted LCO amplitudes and 

frequencies in very close agreement with the experimental data. Patil, et al., [93] 

presented results obtained for LCOs in high-aspect-ratio wings caused by 

structural and aerodynamic nonlinearities. The analysis was based on 

geometrically exact structural analysis and finite-state unsteady aerodynamics 

with stall. The results indicated that stall limits the amplitude of post-flutter 

unstable oscillations. At speeds below the linear flutter speed, LCOs could be 

observed if the stable steady state was disturbed by a finite-amplitude 

disturbance. A critical disturbance magnitude at a given speed and a critical 

speed at a given disturbance magnitude was required to initiate LCOs. The LCO 

got more complex with increasing speed. Period doubling was observed at low 

speeds and as the speed increased the oscillation lost periodicity and become 

chaotic. 

The influence of parameter uncertainties on aeroelastic structures as well 

as the methods used to solve the systems with parameter uncertainties are 

shown in the next paragraph. 

 

1.4 Systems with Parameter Uncertainties 

Recent trends of studying structural mechanics involve randomness. 

These structures are usually modeled by linear differential equations with random 



www.manaraa.com

28 

 

coefficients. From a mathematic point of view, a system can be modeled by the 

following equation [94]: 

 
u fΛ =       (1.27) 

 

where Λ  is a stochastic differential operator, e.g. 
2

2

d dm c k
dt dt

⎛ ⎞
Λ = + +⎜ ⎟

⎝ ⎠
, where 

m , c , k  are random variables, u  is the random response and f  is the excitation 

which can be deterministic or random. The case of deterministic linear operator 

Λ  and random excitation f  has been widely studied in the literature (e.g. [95-

97]). The case when Λ  is stochastic is more difficult and only approximate 

solutions are available. The systems which involve random operators (Λ ) are 

called systems with parameter uncertainties.  

Parameter uncertainties owe their origin to a number of sources, which 

include 

(i) randomness in material properties due to variations in material 

composition; 

(ii) randomness in structural dimensions due to manufacturing variations and 

thermal effects; 

(iii) randomness in boundary conditions due to preload and relaxation 

variations in mechanical joints; 

(iv) randomness of external excitations. 

The major tools for analytical and numerical solutions of systems with 

parameter uncertainties are direct Monte Carlo simulation [98-102], perturbation 
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method [103-107], and Neumann expansion method [94, 105, 107-110]. These 

tools when are combined with deterministic finite element method, are called 

stochastic finite element methods.  

Due to the large number of samples which require a high computational 

time, the Monte Carlo simulation is used mainly to verify other approaches. The 

perturbation method and Neumann expansion method proved acceptable results 

for small random variation in the material properties. It was found that the 

methods are comparable in accuracy but the most efficient solution procedure is 

the perturbation finite element method which requires a single simulation. 

However, perturbation methods require the system uncertainty to be small 

enough to guarantee convergence and accurate results.  

 

1.4.1 STOCHASTIC FINITE ELEMENT METHODS  

In this section, the Monte Carlo simulation, perturbation method, and 

Neumann expansion method will be briefly described. The methods are chosen 

because their popularity and their compatibility with the finite element method. 

The methods are based on direct operation on the following equation [94]: 

 
( ) ( )( ) ( )( ) ( )x x, , x x, , x x,L u f⎡ ⎤+Π α θ α θ = θ⎣ ⎦                  (1.28) 

 
where ( )xL  is a deterministic differential operator, ( )( )x, , xΠ α θ  is a differential 

operator whose coefficients are zero-mean random processes, ( )x,α θ  is a zero-

mean random process, θ  is a parameter that belongs to the space of random 

events, and x  is a variable that belongs to the deterministic domain, e.g., D . 
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Equation (1.28) is derived from equation (1.27) under the assumption that the 

random coefficients which belong to operator Λ  can be decomposed into a 

purely deterministic component and a purely random component in the following 

way [94]: 

 
( ) ( ) ( )x, x x,k k ka aθ = +α θ     (1.29) 

 
where ka  is a random coefficient which belongs to Λ , ka  is the mathematical 

expectation of ka , and kα  is a zero-mean random process with the same 

covariance function as ka . 

 Before describing the above mentioned methods, it is necessary to 

illustrate the Karhunen-Loeve expansion, an expansion of the Fourier type which 

is utilized to discretize the continuous random field.  

 

1.4.1.1 Karhunen-Loeve Expansion (K-L) 

In finite element modeling, the uncertainties are usually introduced into the 

stiffness parameters. These parameters are usually modeled by a Markov10 

random field. One of the major problems of incorporating the random field into 

finite element analyses is to deal with abstract spaces which have limited 

physical support [94, 107]. The difficulty involves the treatment of random 

variables defined on these abstract spaces. Usually the problem is solved by 

Monte Carlo simulation which requires a large number of points to be sampled. 
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Another way is to discretize the random field into a series of Fourier type called 

Karhunen-Loeve expansion.  

Let the random field be denoted by the function ( )x,χ θ , where θ  is a 

parameter that belongs to the space of random events. The random field ( )x,χ θ  

can be expressed by the truncated Karhunen-Loeve (K-L) expansion [94]: 

 

( ) ( ) ( ) ( )
1

x, x x
N

n n n
n

f
=

χ θ = χ + α θ λ∑                     (1.30) 

 
where ( )xχ  is the mean value of ( )x,χ θ ,  nλ  is some constant, ( )xnf  is a set of 

deterministic functions, and ( )nξ θ  is a set of random variables with zero mean 

and ( ) ( )n m nmE ξ θ ξ θ = δ⎡ ⎤⎣ ⎦ , nmδ  is the Kronecker delta.  Ghanem and Spanos [94] 

showed that nλ  and ( )xnf  are given by the solution of the integral equation 

 

1 1 1(x, x ) (x ) x (x)n n n
D

C f d f=∫ λ         1.31) 

 
where 1(x, x )C  is the covariance kernel of the random field ( )x ,χ θ .  

Ghanem and Spanos [94] and Loeve [111] showed that for a Gaussian 

process the K-L expansion is convergent. For a one-dimensional Gaussian 

process, the covariance kernel of the random field ( x, )χ θ  is given by: 

 
1x x /2

1(x, x ) corlC e− −= χσ             (1.32) 

                                                                                                                                  

10 A Markov field is characterized by a random spatial structure whose probability at location n 
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where 2

χσ  is the variance of the random field χ , corl  is the correlation length such 

that corl L→ , and L  is the length of the one-dimensional domain which will be 

discretized. For the case of one-dimensional problem equation (1.31) can be 

written after introducing equation (1.32) as: 

 
1

/ 2
x x /2

1 1
/ 2

(x ) x (x)cor

L
l

n n n
L

e f d f− −

−

=∫ χσ λ           (1.33) 

 
Equation (1.33) can be solved analytically for one dimensional case [94]:  

 
( ) ( )1 1

x / 2
x x / x x /2 2

1 1 1 1
/ 2 x

(x ) x (x ) x (x)cor cor

L
l l

L

e f d e f d f− − −

−

+ =∫ ∫χ χσ σ λ    (1.34) 

 
Differentiating equation (1.34) with respect to x , gives: 

 
( ) ( )1 1

2 2x / 2
x x / x x /

1 1 1 1
/ 2 x

(x ) x (x ) x (x)cor cor

L
l l

cor corL

e f d e f d f
l l

− − −

−

′− + =∫ ∫χ χσ σ
λ          (1.35) 

 
Differentiating equation (1.35) with respect to x , the following equation is 

obtained: 

 
2

2

1 1(x) 2 (x) 0n n n n
cor cor

f f
l l

⎛ ⎞
′′ + − =⎜ ⎟

⎝ ⎠
χλ σ λ                 (1.36) 

 
Introducing 

 

                                                                                                                                  

depends on its state at n - 1 regardless of the previous state n - 2, n - m, m > 1. 
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2
2

2

1 12
cor corl l

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

χσω λ
λ

                   (1.37) 

 
equation (1.36) becomes 

 
2(x) (x) 0f f′′ + =ω         (1.38) 

 
Evaluating equations (1.34) and (1.35) at x / 2L= − , and x / 2L= , and 

rearrange, the boundary conditions for equation (1.38) are obtained: 

 
1 ( / 2) ( / 2) 0
cor

f L f L
l

′+ =          (1.39.a) 

1 ( / 2) ( / 2) 0
cor

f L f L
l

′− − − =           (1.39.b) 

 
The solution of equation (1.38) is: 

 
1 2(x) cos( x) sin( x)f a a= +ω ω     (1.40) 

 
Introducing equation (1.40) into (1.38) and applying the boundary 

conditions (1.39) the following equations are obtained: 

 

1 2
1 1tan tan 0

2 2cor cor

L La a
l l

ω ω ω ω
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
       (1.41.a) 

1 2
1 1tan tan 0

2 2cor cor

L La a
l l

ω ω ω ω
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                 (1.41.b) 
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Setting the determinant to zero the following transcendental equations are 

obtained: 

 
1 tan 0

2cor

L
l

ω ω⎛ ⎞− =⎜ ⎟
⎝ ⎠

; 1 tan
2cor

L
l

ω ω⎛ ⎞+ ⎜ ⎟
⎝ ⎠

        (1.42.a,b) 

 
Denoting the solution of the equation (42.b) by *ω , the eigenfunctions 

are: 

 

( ) ( )
( )

cos x
x

sin 2 / 2
2 2

n
n

n

n

f
LL

=

+

ω

ω
ω

; ( ) ( )
( )

sin *x
* x

sin 2 * / 2
2 2 *

n
n

n

n

f
LL

=

−

ω

ω
ω

     (1.43.a,b) 

 
for even n  and odd n  respectively. The corresponding eigenvalues are: 

 
2

2 2

2 /
1/

cor
n

n cor

l
l

=
+
χσλ

ω
; 

2

2 2

2 /
*

* 1/
cor

n
n cor

l
l

=
+
χσλ

ω
                          (1.44.a,b) 

 

for even n  and odd n  respectively. 

Introducing expressions (1.43) and (1.44) into (1.30) the random field takes the 

form: 

 

( ) ( ) ( ) ( ) ( )
( )2 2

1

/x, x 2 cos x
1/ sin 2 / 2

N
n cor

n n
n n cor n n

l
l L Lχ

=

ω
χ θ = χ + α θ σ ω

ω + ω + ω⎡ ⎤⎣ ⎦
∑  (1.45) 

 
The expression (1.45) is the Karhunen-Loeve expansion for a one-dimensional 

random field. Next, three best known methods that deal with uncertainty 

modeling and their integration into finite element analysis, will be described. 
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1.4.1.2 Monte Carlo Simulation 

In the absence of analytical solution of the probability density function 

(PDF) of a given random variable, one has an alternative to use Monte Carlo 

simulation. The method consists of numerically simulating a population 

corresponding to the random quantities in the physical problem, solving the 

deterministic problem associated with each member of that population, and 

obtaining a population corresponding to the random response quantities. This 

population can be used to obtain the statistics of the response variables. 

 The Monte Carlo simulation is a very powerful tool and it is the most 

accurate. Unfortunately, the method requires very large population so it is very 

expensive in computational time. It is mainly used to validate other approaches. 

Monte Carlo simulation involves numerically generating the random process 

( ),k xα θ  and ( ),f x θ  which appear in equation (1.28) for a fixed value of θ . 

Equation (1.28) is solved as a deterministic equation, then the procedure is 

repeated a number of times for different values of θ . 

 

1.4.1.3 Perturbation Method 

 The perturbation method applied in problems that involve random 

variables is an extension of the method used in nonlinear dynamics [112]. If 

certain smoothness conditions are fulfilled, the variables and operators can be 

expanded into Taylor series about their mean values. If a system is modeled by 
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r  random variables and if the excitation is deterministic, then equation (1.28) will 

be: 

 
( ) ( )( ) ( )( ) ( )x , x , x xL u f⎡ ⎤+Π α θ α θ =⎣ ⎦                      (1.46) 

 
Expanding Π  and u  in a Taylor series about their mean values gives: 

 

( )( ) ( ) ( ) ( )( )
1

, x , x
r

i
i i=

∂
Π α θ = α θ Π α θ

∂α θ∑  

( ) ( ) ( ) ( ) ( )( )
2

1 1
, x ...

r r

i j
i j i j= =

∂
+ α θ α θ Π α θ +

∂α θ ∂α θ∑∑               (1.47a) 

 

( )( ) ( ) ( ) ( ) ( )( )
1

, x x , x
r

i
i i

u u u
=

∂
α θ = + α θ α θ

∂α θ∑  

( ) ( ) ( ) ( ) ( )( )
2

1 1
, x ...

r r

i j
i j i j

u
= =

∂
+ α θ α θ α θ +

∂α θ ∂α θ∑∑                (1.47b) 

 
Introducing equations (1.47) into equation (1.46) and collecting terms of 

the same ( )iα θ  order, the following perturbation equations are obtained:  

0
iα  order: 

 
( ) ( ) ( )x x xL u f=             (1.48a) 

 
1
iα  order: 

 
 

( ) ( ) ( )( ) ( ) ( )( ) ( )x , x , x x 0
i i

L u u
⎡ ⎤ ⎡ ⎤∂ ∂

α θ + Π α θ =⎢ ⎥ ⎢ ⎥
∂α θ ∂α θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (1.48b) 
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Note that in this example only terms up to first order are shown. 

Once the solutions of the equations (1.49) are obtained, the response of 

the process can be written as: 

 

( )( ) ( ) ( ) ( ) ( )( )
1

, x x , x ...
r

i
i i

u u u
=

∂
α θ = + α θ α θ +

∂α θ∑              (1.49) 

 
In order to introduce the perturbation method into finite element analysis, 

either the variational principle or Galerkin method can be used directly on 

equations (1.48), yielding a sequential system of algebraic equations to be 

solved for the successive derivatives of the response.  

The perturbation method was originally used for static analyses. However, 

Liu, et al., [106] showed that the perturbation method is suitable for dynamic and 

nonlinear systems. The advantage of the method is that equations (1.48) need to 

be solved only once because they do not depend on random variables. 

Because the perturbation method uses the Taylor series expansion, its 

accuracy decreases with the increase of level of uncertainty. Improved accuracy 

will be obtained if the K-L expansion is used to expand the operator Π  [113]. 

This method will be further discussed in the Chapter 3.  

 

1.4.1.4 Neumann Expansion Method 

The Neumann expansion method is based on the assumption that 

equation (1.28) can be solved by computing the inverse of a given operator. It is 

known that when it exists, the inverse of an operator can be expanded into a 
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convergent series in terms of iterated kernels [94, 114]. The theory was 

developed by Neumann and further studied by Fredholm [115]. Further extension 

of the theory which includes the concept of generalized inverse [116], was 

applied to the solution of stochastic operator equations by Bharrucha-Reid [117]. 

The concept was later improved by Adomian [118] and Adomian and Malakin 

[110]. The concept was purely theoretical until Shinozouka and Nomoto [109] 

introduced the concept into structural mechanics. The Neumann expansion 

method consists  of expressing the solution of equation (1.28) in the series form 

[94]: 

 

 ( )( ) ( ) ( ) ( )( ) ( )1

0
, x 1 x x, , x x,

ii

i
u L f

∞
−

=

⎡ ⎤α θ = − Π α θ θ⎣ ⎦∑                (1.50) 

 
Series (1.50) is convergent if satisfies the following condition: 

 
( ) ( )( )1 x x, , x 1L− Π α θ <                                    (1.51) 

 
Note that the inclusion of higher order terms, even the second order terms, in the 

expansion implies cumbersome algebraic manipulation. In order to obtain more 

accurate results, Yamazaki et al. [119] suggested to apply a Monte Carlo 

simulation to equation (1.50). With this implementation, only the deterministic 

operator L  needs to be inverted. However, the method requires several runs in 

order to obtain reliable results. Because the deterministic operator needs to be 

inverted the method is applicable only on linear systems.  
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1.4.2 NONLINEAR AEROELASTIC MODELS WITH PARAMETER 

UNCERTAINTIES 

 Some recent results on the sensitivity and variability of the response and 

eigenvalues of structural stochasticity have been reviewed by Ibrahim [120] and 

Manohar and Ibrahim [121]. These reviews showed that the early developments 

relied on Monte Carlo simulation and later on first- and second-order perturbation 

methods to compute second-order moments of structure response. Furthermore, 

these reviews focused on the results pertaining to parametric approaches. On 

the other hand, non-parametric approaches, based on the use of the maximum 

entropy principle [122] were considered by Soize [123-127] for modeling random 

uncertainties in linear and nonlinear elasto-dynamics in the low frequency range. 

Soize [125] introduced a new ensemble of random matrices constituted of 

symmetric positive-definite real random matrices.  

 Regarding the randomness in boundary conditions due to preload and 

relaxation variations in mechanical joints, Ibrahim and Pettit [128] presented an 

assessment of dynamic problems associated with joint relaxation and 

uncertainties. Fasteners and joints subjected to vibration often lose much of their 

preload; this is known as relaxation. First there is a slow loss of pre-load caused 

by some of the relaxation mechanisms. Vibration increases relaxation because 

wear and hammering take place during vibration. Vibration-induced loosening 

and relaxation effects cause time-dependent boundary conditions and depend on 

the level of structural vibration. 
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  Perturbation stochastic finite element method (SFEM) has been adopted 

by Nieuwenhof and Coyette [113] using the K-L expansion to discretize random 

fields arising from structure mechanical properties. An alternative method for the 

dynamic analysis of linear structural systems with parameter uncertainties 

subjected to either deterministic or random excitation was developed by Jensen 

[129]. His method was an extension of the deterministic finite element method to 

the space of random function. A Neumann dynamic SFEM of vibration for 

structures with stochastic parameters to random excitation was described by Lei 

and Chen [130]. The equation of motion was transformed into quasi-static 

equilibrium equation for the solution of displacement in the time domain. 

Neumann expansion method was applied to the equation for deriving the 

statistical solution of the dynamic response within the framework of Monte Carlo 

simulation.  

 Free vibration and reliability of composite cantilever beams featuring 

uncertain properties was analyzed by Oh and Librescu [131]. Klosner et al. [132] 

studied the influence of uncertainty of stiffness nonlinearity of Duffing oscillator 

and two coupled Duffing oscillators on the response statistics using equivalent 

linearization technique and Monte Carlo simulation. It was found that the 

response variances are essentially independent of the variances of the random 

parameters. The variance errors were found to decrease with increasing 

parameter variances.   

Structural and material uncertainties have a direct impact on the flutter 

characteristics of aeroelastic structures and they have attracted some attention in 
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the literature. They were considered in studying the flutter of panels and shells by 

several authors [133-137]. Liaw and Yang [133, 134] quantified the effect of 

parameter uncertainties on the reduction of the structural reliability and stability 

boundaries of initially compressed laminated plates and shells. For buckling 

analysis, the uncertainties were included in the modulus of elasticity, thickness, 

and fiber orientation of individual lamina, as well as geometric imperfections. For 

flutter analysis, further uncertainties such as mass density, air density, and in-

plane load were also considered. Kuttenkeuler and Ringertz [135] performed an 

optimization study of the onset of flutter, with respect to material and structural 

uncertainties, using finite element analysis and the doublet-lattice method. 

Lindsley et al. [136, 137] considered uncertainties in the modulus of elasticity and 

boundary conditions for a nonlinear panel in supersonic flow. The probabilistic 

response distributions were obtained using Monte Carlo simulation. It was 

observed that uncertainties have the greatest nonlinear influence on limit cycle 

oscillation (LCO) amplitude near the deterministic point of LCO.  

Recently, Pettit and Beran [138, 139], Ueda [140], and Attar and Dowell 

[141] considered the influence of parameter uncertainties on the aeroelastic 

response of typical airfoil sections. The effect of parametric uncertainty on the 

response of a nonlinear aeroelastic system was studied by Attar and Dowell 

[141] using a response surface method to map the random input parameters to 

the root-mean square wing tip response.  

Ostenfeld-Rosenthal, et al. [142], Ge, et al. [143], and Jakobsen and 

Tanaka [144] considered the influence of uncertainties of structural properties (in 
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particular damping) on the reliability analysis of flutter of the bridge girder and a 

flat plate. The prediction of the flutter wind speed was found to be associated 

with a number of uncertainties such that the critical wind speed can be treated as 

a stochastic variable. The probability of the bridge failure due to flutter was 

defined as the probability of the flutter speed exceeding the extreme wind speed 

at the bridge site for a given period of time. 

A ground vibration test was used by Potter and Lind  [145] to obtain 

uncertainty models, such as natural frequencies and their associated variations, 

which can update analytical models for the purpose of predicting robust flutter 

speeds. Different norm approaches were used to formulate uncertainty models 

that cover the entire range of observed variations. It was found that the norm∞−  

produces the smallest uncertainty and the least conservative robust flutter speed. 

Lind and Brenner [146] introduced a tool referred to as the “flutterometer” for 

predicting the onset of flutter during a flight test. The flutterometer computes a 

flutter for an analytical model with respect to an uncertainty description. Brenner 

[147] considered a technique that identifies model parameters and their 

associated variances from flight data. Later, Prazenica, et al. [148] introduced a 

technique for estimating uncertainty descriptions based on a wavelet approach, 

but relies on Volterra kernels.  

An adaptive control of a supersonic airfoil with flap was proposed by Rao, 

et al. [149]. The control objective is to stabilize the pitch angle while adaptively 

compensating for uncertainties in all of the aeroelastic model parameters. It was 

shown that all the states of the closed-loop system are asymptotically stable. 
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Reddy, et al. [150] described a probabilistic approach for aeroelastic analysis of 

turbo-machinery blade rows. The analysis accounts for uncertainties in structural 

and aerodynamic design variables. The results showed that the probabilistic 

approach provides a more realistic way to assess the effect of design variables 

on the aeroelastic instability.  

Next paragraph includes a review of stabilization of mechanical systems in 

the presence of parametric excitation. 

 

1.5 Stabilization of Unstable Systems via Parametric Excitation 

Stabilization of unstable systems using deterministic or random parametric 

excitation, in the absence of feedback control, has been extensively studied in 

different mechanical, chemical, optical, or neuroscience models. A recent 

detailed review about systems stabilized via parametric excitation as well as 

noise-enhanced stability is documented by Ibrahim [151, 152]. The purpose of 

this section is to present a review of the main results reported in the literature. 

This review is valuable in interpreting and understanding the influence of 

parametric excitation on the system considered in the present study. With 

reference to aeroelastic structures only few studies have been reported in the 

literature. On the other hand, the inverted pendulum has received extensive 

analytical and experimental studies.  
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1.5.1 STABILIZATION EVIDENCE IN AEROELASTIC STRUCTURES 

Parametric excitation of aeroelastic structures has been considered for a 

limited number of studies [153-156]. For example, Lumbantobing and Haaker 

[153] considered the parametric excitation of two one-degree-of-freedom 

nonlinear aeroelastic oscillators in cross-flow. A nonlinear Mathieu equation 

describes the motion of the oscillators. The origin of nonlinearity is the 

dependence on the flow angle of attack. In the absence of parametric excitation, 

there is a critical wind speed above which the system exhibits periodic 

oscillations. It was found that by increasing the air flow speed above the critical 

value the equilibrium position is re-stabilized. However, if the parametric 

excitation is due to longitudinal turbulence, the frequency of coalescence occurs 

at a lower air flow speed [151, 157, 158]. Chin, et al., [154, 155] obtained the 

modulated equations of a simply supported panel in a supersonic flow to 

calculate the equilibrium solutions and their stability. In the neighborhood of 

combination parametric resonance, they identified the excitation parameters that 

suppress flutter and those that lead to complex motions. A general solution for 

dynamic stability of the fluttered systems subjected to parametric random 

excitations was proposed by Young, et al.,  [156]. The numerical results showed 

that a beam or a panel in the flutter mode remain stable in the sense of 

asymptotic sample stability due to white noise excitation.  
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1.5.2. STABILIZATION OF THE INVERTED PENDULUM 

The stabilization of mechanical systems using parametric excitation was 

first time observed by Stephenson [159] on an inverted pendulum. A schematic 

diagram of an inverted pendulum is shown in Figure 1.12. The equation of motion 

for this system written in standard Mathieu form is [151]: 

 
( )cos 0′′θ + α +β τ θ =          (1.52) 

 
where θ  is the angle measured from the vertical upward position, prime denotes 

differentiation with respect to the non-dimensional time tτ = Ω , 2 2/nα = −ω Ω  , 

2
0 /nZ gβ = − ω , 0Z  is the amplitude of the support excitation, Ω  is the frequency of 

the excitation, nω  is the natural frequency of the system, and g  represents the 

gravitational acceleration. 

Stephenson [159] showed that the inverted pendulum can be stabilized by 

applying the following parametric excitation:  

 
0( ) cosz t Z t= Ω                (1.53) 

 
with sufficiently small amplitude and sufficiently high frequency, i.e., 

 
02 /g ZΩ >      (1.54) 

 
where  is the pendulum length. However, later studies [160] revealed that the 

inverted state can be stabilized with lower excitation frequency and larger 

excitation amplitude provided that these lie within the stability region. Different 
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versions of inverted pendulum were analyzed in [161-166]. The studies 

demonstrated that the pendulum becomes unstable on upward acceleration of its 

support while the stability state is obtained on downward acceleration. Depending 

on the physical parameters, the periodic exchange between the two situations 

the system can be globally stable or unstable [151].   

Experimental work involving stabilization of inverted pendulum was done 

in [167-169]. The influence of the tilt of the excitation from the gravity direction on 

the stabilization of the inverted pendulum has been the subject of analytical and 

experimental studies [170-172]. It was discovered that the angle of inclination of 

the pendulum in the stable position differs from the angle of parametric 

excitation. However, if the excitation frequency increases then both angles 

approach each other.  A pendulum with bilinear hysteresis was studied by Tso 

[173] who found that bilinear hysteresis limits the growth of the amplitude 

response during parametric resonance. 

Stabilization of a double pendulum with linear viscoelastic joints was 

considered by Agafonov [174, 175] and Agafonov and Shcheglov [176]. It was 

found that small dissipation can destabilize the system. Also the stabilization is 

effective at high frequency. Studies involving a chain of inverted pendulums have 

been done by Otterbein [177] and Acheson [160, 178]. Acheson [178] used 

modal analysis to find the stability of N inverted pendulums modeled by N 

uncoupled Mathieu equations with different parameters. If the frequency for each 

mode is chosen sufficiently high and amplitude sufficiently small, the chain can 

be stabilized by parametric excitation. The numerical simulation [178] and 
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experimental tests [179] for two and three pendulums showed that the stability is 

remarkably robust even to quite large disturbances. 

The limiting case for a chain on inverted pendulums, N →∞ , was used by 

Hurst [180] as a possible explanation of the “Indian rope trick” 11 (see Figure 

1.13). Unfortunately they found that the stable region is insignificant, and the 

explanation fails. However, experiments done by Acheson [160] and Acheson 

and Mullin [181] showed that a piece of “bending curtain wire” clamped at the 

bottom and free at the top, can be stabilized by the parametric excitation. This 

phenomenon was called by Galán et al. [182] the “Indian rod trick”. 

   Galán, et al., [182] proposed a discrete model in which small amounts of 

damped elastic constraints were added to the bottom joint and the joints between 

N identical pendulums. In the limit, N →∞ , the system approaches the case of a 

continuously flexible rod after including realistic material damping. Their analysis 

revealed that damping has the effect of removing most of instability regions for 

fixed amplitude of parametric excitation. The shape of instability curves and 

mode shapes of the corresponding instabilities were found in agreement with 

those of an experiment on curtain wire. 

 

1.6 Scope of the Present Research 

This chapter provides an overview of the work published in the literature 

pertaining to stabilization of aeroelastic structures and systems with parametric 

                                            

11 This legend involves an Indian magician who throws a rope to the sky, but the rope does not fall back to 
the ground. Instead it mysteriously rises until the top disappears into thin air. Unfortunately, this claim has 
never been substantiated. 



www.manaraa.com

48 

 

uncertainties. These results include the stabilization of the initially unstable 

systems in the absence of feedback control which has been studied for several 

years on inverted pendulum or a chain of inverted pendulums. Few other 

systems have also been consulted. However, to the best of my knowledge, the 

role of parametric excitation on the stabilization of the aeroelastic structures has 

not yet been well understood. In aeroelasticity the most common way to 

suppress flutter is active feedback control.  

Furthermore, the present Chapter has also presented various models of 

aeroelastic structures that involve nonlinearities and parameter uncertainties. To 

the best of my knowledge very few papers considered the effect of both 

nonlinearities and uncertainties in aeroelastic systems and most of them were 

formulated for plates at supersonic flow speeds. Furthermore, few studies 

considered perturbation method to model an aeroelastic wing in the presence of 

parameter uncertainties. The implementation of perturbation method has been 

considered a very important tool because it is very cheap in computational time 

and requires only a single simulation.  

However, these results do not address other issues which are considered 

in the present work. The main objectives of the present research are: 

• To investigate the role of parametric excitation on the flutter behavior of a 

cantilever beam. This task will explore the possibility of suppressing flutter 

of a cantilever wing via parametric excitation in the neighborhood of 

combination parametric resonance of summed-type.  This type of 

excitation owes its origin to a possible longitudinal vibration of aircraft 
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engines. The sources of nonlinearities are due to the small in-plane 

displacement and nonlinear curvature. This task is completely developed 

in Chapter 2. 

• To develope a numerical algorithm to study the influence of stiffness 

uncertainties on the flutter behavior of an aeroelastic wing. The numerical 

algorithm originally developed by Predikman and Mook [36] will be 

adopted. This algorithm has been originally developed to simulate 

unsteady, nonlinear, incompressible flow interacting with linear aeroelastic 

wing in the absence of uncertainties. The uncertainties in the structure are 

modeled using a modified first order stochastic perturbation method 

together with a truncated Karhunen-Loeve expansion instead of Taylor 

series. The method was developed by Nieuwenhof and Coyette [113] and 

it was used for a linear dynamic system which was analyzed in frequency 

domain. The method has never been used in time domain and for an 

aeroelastic system. However, the Taylor series is used for displacement 

vector expansion. The perturbation method will be integrated into a finite 

element method in order to model the wing structure. The air flow and 

wing structure will be treated as elements of a single dynamic system. 

Next the perturbation stochastic method will be compared to Monte Carlo 

simulation. Chapter 3 presents the modeling of the system and the results 

of the two approaches. 
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Figure 1.1. Schematic diagram showing a two-dimensional analytical airfoil model 

 

 
Figure 1.2. Streamlines for a uniform flow parallel to the x-axis [23] 

 

 
Figure 1.3. Equipotential lines and streamlines for flow from a two-dimensional 

source [23] 
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Figure 1.4. Equipotential lines and streamlines for a doublet [23] 

 

 
Figure 1.5. Equipotential lines and streamlines for a potential vortex [23] 
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Figure 1.6. Vortex ring model for a thin lifting surface [24] 
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Figure 1.7. Model of self-sustained shock oscillations [49, 183] 
 
 

 
Figure 1.8. A 3D representation of the computed wakes using the unsteady 

vortex lattice method [25] 
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Figure 1.9. Boundary layer separation [51].  

(a) At low angles of attack, the boundary layer leaves as a wake at the trailing 

edge; (b) At higher angles of attack, the boundary layer on the upper surface 

separates; (c) As the angle of attack increases, the separation position moves 

forward. 

(c) 

(b) 

(a) 
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Figure 1. 10. Force versus displacement curve for 

a) cubic hardening spring, b) cubic softening spring [49] 

 
 

               

Figure 1.11. Force vs. Displacement: (a) flat spot without preload; (b) general 
bilinear spring [49] 
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Figure 1.12. Inverted pendulum under parametric excitation [151] 
 

0 cosZ tΩ



www.manaraa.com

57 

 

 

  
 

Figure 1.13. Indian rope trick 
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CHAPTER 2 

FLUTTER SUPPRESSION OF A PLATE-LIKE WING VIA 

PARAMETRIC EXCITATION  

2.1 Introduction 

The purpose of the present study is to explore the possibility of 

suppressing flutter of a cantilever wing via parametric excitation in the 

neighborhood of combination parametric resonance of summed-type. The 

excitation of the clamped end is applied in the plane of largest rigidity such that 

the bending and torsion modes are cross-coupled through the excitation. This 

type of excitation owes its origin to a possible longitudinal vibration of aircraft 

engines. The sources of nonlinearities are due to the small in-plane displacement 

and nonlinear curvature. Section 2.2 deals with developing the analytical 

modeling of the nonlinear wing under aerodynamic loading. The aerodynamic lift 

and moment are modeled based on Theodorsen’s theory and the equations of 

motion are developed using Hamilton’s principle. The reference axis is taken to 

pass through the elastic axis of the wing. This will result in a linear coupling in the 

equations of motion in addition to the inherent nonlinear coupling. Thus the 

equations of motion differ from those derived by Ibrahim and Hijawi [184] due to 

the presence of linear coupling and aerodynamic loading. Section 2.3 presents a 

linear analysis of the system normal modes and parametric stability boundaries 

in the absence and presence of airflow at the flutter speed. In the absence of 

aerodynamic forces, the response dynamic behavior is determined using multiple 
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scales method in the neighborhood of combination resonance. The parametric 

excitation at the critical flutter speed and at slightly higher value than the flutter 

speed is considered in Section 2.4. Section 2.5 presents numerical simulation of 

the original coupled bending and torsion equations of motion of the wing. It is 

interesting to find out that the parametric excitation results in stabilization of the 

flutter wing when the excitation amplitude exceeds a critical value.  

Lindner, et al., [185] presented an assessment of the dynamic behavior of 

some specific models driven by Gaussian white noise. The systems considered 

possess a single stable rest state which can be simply an equilibrium (or fixed) 

point or a small-amplitude (sub-threshold) limit cycle. The large excursions of the 

system’s variables produced by strong enough perturbations of this state are 

often called spikes, and their occurrence is referred as a “firing”. This terminology 

is borrowed from neuroscience and the associated scenarios are well described 

in reference [185]. In neuroscience, the electrical discharge of a nerve cell’s 

membrane potential is commonly called an action potential or a firing of a spike. 

The generation of a spike is considered as a one-way passage through a 

sequence of stable and unstable states. The resting state, being dynamically 

stable, can be left only by a sufficiently strong external excitation. The firing and 

the following refractory (recovery) states are unstable in the sense that the 

system escapes from them even in the absence of external excitations. While the 

escape from the resting state strongly depends on the external input, the 

passage through the firing and refractory states possesses only a weak 

dependence on the external excitation. 
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Since the occurrence of stable spiking trajectories requires a dynamical 

system close to a bifurcation toward a limit cycle regime, the system must 

possess at least two variables obeying a nonlinear dynamics. Models exhibiting 

this property were first proposed for neuronal spike generation [186-188]. In 

these models a fast variable is driven by an external excitation above a threshold 

level. After that it keeps growing and approaching a second metastable state due 

to a nonlinear dynamics: the system is excited, i.e., in the firing state. Another 

variable, a recovery variable, acting on a slower time scale, destabilizes the 

excited state of the fast voltage variable, bringing it back to its rest state by 

means of negative feedback. When the recovery variable relaxes, the initial state 

is reestablished. The firing and the following refractory states where encountered 

in the present work at the airflow speed slightly higher than the flutter speed. 

The main results of this chapter have been published in reference [189]. 

 

2.2 Analytical Modeling of a Plate-Like Wing 

Consider a cantilever wing having a straight elastic axis, z , perpendicular 

to the fuselage as shown in Figure 2.1(a). The wing deformation can be 

measured by the bending deflection, ( , )u z t , and torsional angle, ( , )z tα , about 

the elastic axis. The displacements of the elastic axis along y , and z  axes are 

v( , )z t  and ( , )w z t , respectively. The deflection, ( , )u z t , is considered positive 

downward and ( , )z tα  is positive when the leading edge is up (clockwise). The 

chord-wise distortion will be neglected. The airfoil is exposed to an 

incompressible fluid flow of speed U∞ . Figure 2.1(b) shows the projections of the 
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model where b  is half of the chord, 1δ  is the distance between the elastic axis 

and mid-chord, 2δ  is the distance between the aerodynamic center and mid-

chord, and 3δ  is the distance between the elastic and inertia axes. 

The cantilever wing is modeled as a plate-like beam subjected to periodic 

base excitation, ( )Y t , in the plane of largest rigidity and involves nonlinear 

coupling between bending and torsion modes. This coupling arises mainly from 

the fact that the centers of mass of cross-sections undergo a small but important 

displacement, v , in the plane of excitation. This displacement is measured in 

terms of the second-order of the fundamental bending, u , and torsion, α , 

displacements. Under an initial bending displacement, ,u∆  with a slight twist, α , 

of the beam cross-section, there will be an inevitable very small displacement 

v u∆ << ∆  associated with these displacements. When the beam is released from 

this state, the inertia force acting through the bending displacement, ),( tzu , will 

give a torque to the beam cross-section.  Similarly, because of the small rotation 

of the principal planes of the cross-section, the inertia force contributes a bending 

moment about the local plane of minimum bending stiffness proportional to the 

twist angle, α . The bending-torsion coupling of the wing can be realized by 

considering the curvatures, xκ , yκ , and zκ  about ,x  ,y  and z −axes, [190], 

2 2

2 2

v
x

u
z z
∂ ∂

= − +
∂ ∂

κ α ,  
2 2

2 2

v
y

u
z z
∂ ∂

= +
∂ ∂

κ α ,  
2

2

v
z

u
z z z

∂ ∂ ∂
= − +

∂ ∂ ∂
ακ     (2.1) 

Note that the curvature xκ  is very small and can be set to zero and thus one can 

write 
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2 2

2 2
v u

z z
∂ ∂

= α
∂ ∂

                                                (2.2) 

This relationship represents the projection of the curvature of the beam in the 

plane Oxz on the Oy-axis, which gives the curvature in the plane Oyz, see Figure 

2.1. It is clear that the displacement v  can be expressed in terms of u  and α  

through double integration of relation (2.2).  Furthermore, one can approximate 

the curvature about z-axis by the linear relationship /z zκ = −∂α ∂ . Neglecting the 

extension of the beam elastic axis, the lateral displacement, v( , )z t , and axial 

drop, ( , )w z t , may be expressed in terms of the bending deflection and the twist 

angle in the form:  

( )
2

20
( , )v(z,t)

z u tl d∂ ξ
= − ξ α ξ

∂ξ∫                  (2.3) 

2

0
1 ( , )( , )
2

z u tw z t d⎛ ⎞∂ ξ
= ξ⎜ ⎟∂ξ⎝ ⎠
∫                 (2.4) 

The kinetic energy is: 

2 2 2 2

3 0
0

1 v 1
2 2

lu w YT dxdydz I dz
t t t t t t

⎡ ⎤∂ ∂α ∂ ∂ ∂ ∂α⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ρ + δ + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫∫∫ ∫    (2.5) 

where, ρ  is the wing density, 0I  is the mass moment of inertia (about the inertia 

axis) per unit length and l  is the wing length. The strain potential energy due to 

bending and torsion is 

22 22

2

0 0

1 11
2 2

l l
u uV EI dz cGJ dz

z z z

⎧ ⎫⎡ ⎤∂ ∂ ∂α⎪ ⎪⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫      (2.6) 
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where E  is Young's modulus, I  is the area moment of inertia of the wing cross-

section about y  axis, J  is the polar moment of inertia of the wing cross-section 

about z  axis, G  is the modulus of rigidity, and c  is a correction constant due to 

the noncircular cross-section of the wing. The curvature will be expressed up to 

cubic order. 

For incompressible flow, the aerodynamic lift per unit span is obtained 

based on Theodorsen’s theory [9] in the form 

( )
2 2

2
2 2

12
2

u uL U bB k U b a b ba
t t t t∞ ∞ ∞ ∞

⎛ ⎞⎡ ⎤∂ ∂α ∂ ∂ α⎛ ⎞= πρ α + + − + πρ −⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
2b U

t∞ ∞
∂α

+πρ
∂

        

(2.7) 

The aerodynamic moment about the elastic axis, z , per unit span is 

( )2 1 12
2 2

uM U b a B k U b a
t t∞ ∞ ∞

⎛ ⎞∂ ∂α⎛ ⎞ ⎛ ⎞= πρ + α + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2 2
3

2 2

uab ba
t t∞

⎛ ⎞∂ ∂ α
+πρ −⎜ ⎟∂ ∂⎝ ⎠

4 2
3

2

1
2 8

ba b U
t t

∞
∞ ∞

πρ∂α ∂ α⎛ ⎞− − πρ −⎜ ⎟
∂ ∂⎝ ⎠

        (2.8) 

where ∞ρ  is the air density, 1 /a b= δ , ( )B k  is the circulation function, which 

depends on the reduced frequency parameter, /k b U∞= ω , ω  is the natural 

frequency of the wing coupled modes and will be determined later. The 

circulation function is a complex quantity represented by [4, 11]: 

( ) ( ) ( )B k F k iG k= +                          (2.9) 

where ( )F k  and ( )G k  are given by the following expression [11]: 

( )
2 2

2 2

0.165 0.3351
0.00207 0.09

k kF k
k k

= − −
+ +

, ( )
4 3

4 2 2 4

8.837 10 0.108
1.863 10 9.207 10

k kG k
k k

−

− −

× +
= −

× + × +
 

Applying Hamilton's principle 
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( )
1 1

0 0 0 0

0
t t l l

t t

T V dt L udz M dz dt
⎡ ⎤

δ − + − δ + δα =⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫     (2.10) 

and carrying out the variational process, gives the equations of motion and 

associated boundary conditions:  

2 22 2 2 2 2

32 2 2 2 20 0

1 1
2 2

z l

z

u u u u um m m d d d
t t z t z t

ξ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ α ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎜ ⎟ ⎜ ⎟− − δ − ξ − ζ ξ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ξ ∂ ∂ ∂ζ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫  

( ) ( ) ( ) ( )
2 2 3 2

2 2 2 20 0
2

z zu um l z l d l z l d
z t t z

⎡ ⎤⎛ ⎞ ⎛ ⎞∂α ∂ ∂ ∂ ∂⎛ ⎞α − − −ξ α ξ + − α −ξ α ξ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ξ ∂ ∂ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  

( ) ( ) ( )
2 2 2 2 2

2 2 2 2 20 0
2

l

z

u um l d m l z l d d
t z z t

ξ ξ⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎛ ⎞∂ ∂ ∂α ∂ α ∂ ∂
α −ξ α ξ − − + − − ζ α ζ ξ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂ξ ∂ ∂ ∂ ∂ζ⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎝ ⎠

∫ ∫ ∫

( ) ( ) ( ) ( )
2 2 2 2 2

2 2 2 2 22Y Y Y Ym l z m l z m m l z l z
t z t z t t z z

⎡ ⎤∂ ∂α ∂ ∂α ∂ ∂ ∂α ∂ α⎡ ⎤−α + − + − − α − − − + − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
2 32 2 24 3 2 2

4 3 2 21 4 1 4 1u u u u u u u uEI EI
z z z z z z z z

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
 

32 2 22 3 2 3 2

2 3 2 3 24 2 1 2 4 1u u u u u u u u u uEI EI
z z z z z z z z z z

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 

3 32 22 2

2 22 1 4 0u u u uEI EI L
z z z z

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠
  (2.11a) 

 

( ) ( )
2 2 2 2 2

2
3 32 2 2 2 20

l

z

u u um m m l z l d d
t t z t

ξ⎛ ⎞⎛ ⎞∂ ∂ α ∂ ∂ ∂
δ + δ + − − ζ α ζ ξ +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ζ⎝ ⎠⎝ ⎠

∫ ∫  

( )
2 2 2

2
02 2 2 0Y um l z I cGJ M

t z t z z
∂ ∂ ∂ α ∂ ∂α⎛ ⎞− + − − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

    (2.11b) 

where m dxdy= ρ∫∫  is the wing mass per unit length. The boundary conditions 

are:  
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0 0| | | 0z z z lz z= = =
∂ ∂

= = =
∂ ∂
α αα , 0 0| | 0z z

uu
z= =
∂

= =
∂

,  
2 3

2 3| | 0z l z l
u u

z z= =
∂ ∂

= =
∂ ∂

    (2.11c) 

We will consider only the first mode in bending and the first mode in 

torsion. Furthermore the solutions are expanded in terms of the generalized 

coordinates and mode shapes 

( )0( , ) ( )u z t u t f z= ;   ( )0( , ) ( )z t t zα = α φ          (2.12a,b) 

where 

( ) ( ) ( ) ( ) ( )cosh 1.875 / cos 1.875 / 0.734 sinh 1.875 / sin 1.875 /f z z l z l z l z l⎡ ⎤= − − −⎣ ⎦ , and 

( ) ( )sin / 2z z lφ = π .  

Applying Galerkin’s method gives the following two coupled nonlinear 

ordinary differential equations 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 21 1
0 2 0 0 0 0 02 21 2 u

b c cm u t c t u t b B k U u t K m u t u t
m l l

∞
∞ ∞

⎡ ⎤π ρ ⎡ ⎤+ + + α + π ρ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

( ) ( ) ( ) ( ) ( )3 3
3 0 6 2 0 0 0uK u t c S a b c mu t t tα ∞

⎡ ⎤+ − π ρ + α α +⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
6 2 0 0 0 6 02 2 1 1 2b c B k U c mu t t t c b a B k U t∞ ∞ ∞ ∞⎡ ⎤ ⎡ ⎤π ρ + α α + π ρ + − α +⎣ ⎦⎣ ⎦  

     ( ) ( )3 0 0c m t Y tα =       (2.13) 

 

( ) ( ) ( ) ( ) ( )2 4 2 3
4 0 0 0

1 1 1 1 2
8 2

I a b c mu t t a a B k b U tα ∞ ∞ ∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ + π ρ + α + − − + π ρ α +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3
0 7 4 0 0 01 2K a B k b U t c S a b c mu t t u tα ∞ ∞ α ∞

⎡ ⎤⎡ ⎤− + π ρ α + − π ρ + α −⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
7 0 4 0 0 0 5 01 2 2 0c a b B k U u t c mu t t u t c mu t Y t∞ ∞+ π ρ + α + =        (2.14) 
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where m  is the wing mass per unit length, 2
0 3I I mα = + δ , Iα  is the wing mass 

moment of the inertia (about the elastic axis) per unit length, 3S mα = δ , 

412.3596 /u yK EI l= , 2 2/ 4K cGJ lα = π , 6
3 80.8579 /u yK EI l= , 1 4.597c = , 

2 0.222567c = , 3 0.42c = , 4 0.4552c = , 5 0.84129c = , 6 0.677861c = , and 7 1.3557c = . 

Introducing the non-dimensional parameters 0 /u u b= , /Y Y b= , tατ = ω , 

and linear viscous damping with damping factors uζ  and αζ , equations (2.13) 

and (2.14) take the non-dimensional form 

( ) ( )( ) ( )2 2 2
1 2 6 21 2 uc d u c u c x a c u r B k u

kα
α

⎛ ⎞µ′′ ′′ ′+ µ + + α + − µ + α α + ζ + +⎜ ⎟
⎝ ⎠

 

( )( )
( )2 2 2

6 1 6 221 1 2 2 B kc B k a r c d u u c c u
k kα α

⎛ ⎞µ µ′ ′ ′ ′⎡ ⎤⎡ ⎤+ − α + + + + α α⎜ ⎟⎣ ⎦⎣ ⎦
⎝ ⎠

 

2 2 3
8 3 ( ) 0c d r u c Y ′′+ + α τ =                                      (2.15) 

 

( )( ) ( ) ( )2 24
7 4 72 2 2 2

1 11 1 2
8

cc x a c u u a u c a B k u
r r r k rα
α α α α α

⎛ ⎞µ µ⎛ ⎞′′ ′′ ′− µ + α + + + + α − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

( )2 4
2 2 2

21 12 2
2 2

ca B k a u u
k r k r rα
α α α α α

⎡ ⎤µ µ⎛ ⎞ ⎛ ⎞ ′ ′ ′+ ζ − − + − α + α +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

( ) ( ) 5
2 2 21 1 2 ( ) 0ca B k uY

k r rα α α

⎡ ⎤µ ′′− + α + τ =⎢ ⎥
⎣ ⎦

                       (2.16) 

where a prime denotes differentiation with respect to the non-dimensional time τ , 

the subscript 0  is dropped, bk
U

α
α

∞

ω
= , 

2b
m

∞π ρ
µ = , bd

l
= , Sx

mb
α

α = ,  2

Ir
mb

α
α = , 

1a
b
δ

= , ur
α

ω
=
ω

 , /u uK mω = ,  /K Iα α αω = , and 8 6.5421c =  
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Equations (2.15) and (2.16) will be solved for linear modal analysis, 

parametric stability boundaries, and response LCO in the absence and presence 

of air flow. 

 

2.3. Modal Analysis and Parametric Stability 

The purpose of the linear analysis is to determine the critical flutter speed 

and the corresponding coupled frequencies on the system parameters and 

airflow speed. Under parametric excitation it is important to determine stability 

boundaries in the neighborhood of combination parametric resonance at the 

flutter speed. The linearized equations of motion are: 

( ) ( ) ( ) ( )( )6 61 2 1 1 2uu c x a r B k u c B k a
k kα
α α

⎛ ⎞µ µ′′ ′′ ′ ′⎡ ⎤+ µ + − µ α + ζ + + + − α +⎜ ⎟ ⎣ ⎦
⎝ ⎠

 

( )2
6 322 ( ) 0B kr u c c Y

kα

µ ′′+ α + α τ =          (2.17) 

 

( ) ( ) ( )2
7 72 2 2

1 11 1 2
8

c x a u a c a B k u
r r k rα
α α α α

⎡ ⎤µ µ⎛ ⎞′′ ′′ ′− µ + + + α − + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

( )2
2 2

1 12 2
2 2

a B k a
k r k rα
α α α α

⎡ ⎤µ µ⎛ ⎞ ⎛ ⎞ ′ζ − − + − α +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

( ) ( ) 5
2 2 21 1 2 ( ) 0ca B k uY

k r rα α α

⎡ ⎤µ ′′− + α + τ =⎢ ⎥
⎣ ⎦

                      (2.18) 

In the absence of parametric excitation, equations (2.17) and (2.18) are 

linearly coupled and may be solved for the eigenvalues for the following 

parameters: air mass parameter 1/ 38µ = , elastic axis location 0.36a = − , inertia 

axis location 0.024xα = , inertia ratio 0.62rα = , bending-to-torsion frequency 
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ratio 0.5r = , and damping factors 0.001αζ = , 0.001uζ = . To estimate the critical 

flutter speed, the solution of equations (2.17) and (2.18) is expressed in the form: 

i
au u e ωτ=    and   i

ae
ωτα = α           (2.19) 

where / αω = ω ω  is the nondimensional natural frequency of the wing coupled 

modes.  

Substituting equations (2.19) into equations (2.17) and (2.18), and setting 

the parametric excitation to zero, gives 

( ) ( )2 21 2 u ai r B k r u
kα

⎡ ⎤⎛ ⎞µ
− +µ ω + ζ + ω+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

( ) ( )( )
( )2

6 6 6 21 1 2 2 0a
B kc x a ic B k a c

k kα
α α

⎧ ⎫µ µ
⎡ ⎤− − µ ω + + − ω+ α =⎨ ⎬⎣ ⎦

⎩ ⎭
 (2.20) 

 

( ) ( ) ( )2
7 7 1 2 ac x a ic a B k u

kα
α

⎡ ⎤µ
− − µ ω − + ω +⎢ ⎥
⎣ ⎦

2 2
2

11
8

a
rα

⎧ µ ⎛ ⎞− − + ω +⎨ ⎜ ⎟
⎝ ⎠⎩

 

( )
( )

( )2
2 2 2 2

1 12 2 1 1 2 0
2 2 a

B k B ki a a a
k r k r k rα
α α α α α α

⎫⎡ ⎤ ⎡ ⎤µ µ µ ⎪⎛ ⎞ ⎛ ⎞ζ − − + − ω+ − + α =⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦ ⎣ ⎦⎭

 (2.21) 

Substituting for ( )B k  from the equation (2.9), replacing k kα= ω , and 

rearranging, gives the characteristic equation: 

( , ) ( , )
0

( , ) ( , )
AA k BB k
DD k EE k

α α

α α

ω ω
=

ω ω
           (2.22) 

where the elements of the determinant are given in Appendix A. Traditionally, 

(see e.g., [4]), the flutter speed and flutter frequencies are determined by setting 

the real and imaginary parts of the determinant (2.22) to zero. By giving a series 

of values of k  the corresponding values of ω  were determined from the real and 
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imaginary parts of the determinant. The intersection of the curves corresponding 

to the two parts establishes the flutter frequency and flutter speed. Instead, we 

will numerically solve the determinant (2.22) as a function of the flow speed. In 

view of the presence of ω  up to forth-order in the denominators of circulation 

functions F  and G , the resulting frequency equation is found to be of order 12. 

Careful inspection of this equation reveals that the free terms (coefficient of 0ω ) 

and coefficients of lower order terms ω , 2ω  up to fourth or fifth-order are 

extremely small, resulting in almost zero roots. The numerical solution gives two 

different complex roots and their conjugates. The values of the remaining roots 

were found to be almost near zero. The real components ( )1/re αω ω  and 

( )2
/re αω ω  represent dimensionsless natural frequencies of the coupled modes, 

and the imaginary components ( )1 /im αζ ω  and ( )2
/im αζ ω  stand for the 

corresponding damping factors. The dependence of the eigenvalue components 

on the airflow speed parameter /U b∞ αω  is shown in Figure 2.2(a) when both 

circulation functions F  and G  are considered. It is seen that ( )1 /im α− ζ ω  is 

always negative while ( )2
/im α− ζ ω  switches to a positive value at the critical 

airflow speed / 5.04U b∞ αω =  indicating the occurrence of flutter.  

If one ignores the imaginary component of the circulation function, i.e., 

0G = , the resulting natural frequencies shown in Figure 2.2(b) are found very 

close to those shown in Figure 2.2(a). For the case of Figure 2.2(a) the critical 

flutter speed ratio is ( ) 0
/ 5.04

G
U b∞ α ≠

ω = , while for the case of Figure 2.2(b) 
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( ) 0
/ 4.965

G
U b∞ α =

ω = . The error between the two flutter speeds obtained in both 

cases is 1.5%. Since this error is less than 2%  we will ignore the contribution of 

G .  

It is interesting to note that at zero flow speed, the two natural frequencies 

possess the ratio 0.5 . 

Under parametric excitation, 0 cos( )Y Y= Ωτ , where / αΩ = Ω ω , equations 

(2.17) and (2.18) are considered for stability analysis. Consider the solution of 

equations (2.17) and (2.18) in the form 

1 1sin cos
2 2

u a b⎛ ⎞ ⎛ ⎞Ωτ Ωτ
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
;  1 1sin cos

2 2
A B⎛ ⎞ ⎛ ⎞Ωτ Ωτ

α = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (2.23a,b) 

Substituting equations (2.23) into equations (2.17) and (2.18) and 

equating the coefficients of sin( / 2)Ωτ  and cos( / 2)Ωτ  gives a set of four linear 

homogeneous algebraic equations. The determinant of the coefficients of these 

equations establishes the frequency equation: 

( ) ( )

( )( )

( ) ( )

( ) ( )( )

22
2 26

3 0 6 2

6

2 2 2 2
2 2 2 27

5 0 2

2 27

1 2 ( )1
4 4 2

( ) 1 ( ) 1 2
2

1 ( ) 11 2
4 2 4 32 4

( ) 1 2 1 2 ( ) 1 4
2 4

u

c B kr x a c Y c
k

cB k r B k a
k k

c r B kx a c Y r a a
k

c B k a a B k a r
k k

α
α

α α

α
α α

α

α α
α α

ΩΩ µ
+µ − − µ − Ω −

Ωµµ⎛ ⎞Ω + ζ + −⎜ ⎟
⎝ ⎠

Ω Ω µ Ω µ
− − µ + Ω − − + − − Ω µ

Ωµ Ωµ
− + − − − + Ωζ
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( )( )

( ) ( )

( ) ( )( )

( ) ( )

6

22
2 26 6

3 0 2

2 26

2 2 2 2
2 2 2 26

5 0 2

( ) 1 ( ) 1 2
2

2 ( )11
4 4 2

0
( ) 1 2 1 2 ( ) 1 4
2 4

1 ( ) 11 2
4 2 4 32 4

u
cB k r B k a

k k

c c B kr x a c Y
k

c B k a a B k a r
k k

c r B kx a c Y r a a
k

α α

α
α

α α
α α

α
α α

α

Ωµµ⎛ ⎞Ω + ζ + −⎜ ⎟
⎝ ⎠

Ω µΩ
− +µ − − µ − Ω +

=
⎛ ⎞Ωµ Ωµ

+ − − − − + Ωζ⎜ ⎟
⎝ ⎠

Ω Ω µ Ω µ
− − µ − Ω − − + − − Ω µ

    (2.24) 

The roots of this equation depend on the excitation amplitude and airflow 

speed. These roots are known to be the boundary frequencies of the instability 

regions. The instability regions are bounded by periodic solutions of period 2T , 

where T  is the period of parametric excitation. The stability boundaries belonging 

to zero airflow speed, / 0U b∞ αω = , are given by the solid curves in Figure 2.3, 

while those belonging to the critical flow speed, / 4.965U b∞ αω = , are shown by 

the dashed curves. At the critical airflow speed, the stability boundary touches 

the frequency axis at excitation frequency ratio /( ) 1.04uαω ωΩ + =  regardless of 

the damping of the structure. In the absence of airflow, there are two instability 

regions, a narrow region at excitation frequency ratio less than 1 and a wider one 

at excitation frequency greater than one. At and above the critical speed there is 

only one instability region and it is wider than those below the critical speed. The 

bottom of each instability regions at zero air speed moves away from the 

frequency axis. Inside instability regions, one should consider the system 

inherent nonlinearities that are responsible to bring the response amplitude into a 

bounded limit cycle oscillation (LCO). 
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2.4. Nonlinear Analysis 

2.4.1 RESONANCE CONDITIONS  

The nonlinear modal interaction is examined by considering the coupled 

nonlinear equations of motion (2.15) and (2.16) using multiple scales method 

[112]. The equations of motion are first written in terms of the linearized principal 

coordinates. Consider the equations of motion in the non-dimensional matrix 

form: 

( ) ( )( ) ( ) ( ) ( ) ( ), ( ), ( ),k Y k′′ ′ ′′τ τ + τ = τ τ τnlM u u K u F u u    (2.25) 

where 
( )

( )
( )

u τ⎧ ⎫
τ = ⎨ ⎬α τ⎩ ⎭

u , 1

2

n

n

f
f

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

nlF , ( )0( ) sinY Yτ = Ωτ , 
α

Ω
Ω =

ω
, 

( )
( )

2 2 2
1 2 6 2

7 4 2 24
2 2 2

1

11
8

c d u c c x a c u
c x a c u ca u

r r r

α

α

α α α

⎛ ⎞+µ + − α − µ − α
⎜ ⎟

= − µ + α µ ⎛ ⎞⎜ ⎟+ + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

M ,  
( )

2
6 2

2 2

( )2

0 1 1 2 ( )

B kr c
k

a B k
k r

α

α α

µ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟µ

− +⎜ ⎟
⎝ ⎠

K  

( ) 2 26
1 12 ( ) 1 ( ) 1 2n u

cf r B k u B k a c d u u
k kα α

⎛ ⎞ µµ ′ ′ ′⎡ ⎤= − ζ + − + − α −⎜ ⎟ ⎣ ⎦
⎝ ⎠

 

2 2 3
2 8 32c u c d r u c Y′ ′ ′′+ α α − − α  

( ) 27
2 2 2 2

1 11 2 ( ) 2 2 ( )
2 2n

cf a B k u a B k a
k r k r k rα
α α α α α α

⎡ ⎤µ µ µ⎛ ⎞ ⎛ ⎞′ ′= + − ζ − − + − α⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

54
2 22 cc u u uY

r rα α

′ ′ ′′− α −  

Multiplying equation (2.25) by the inverse of mass matrix, gives 

1 1− −′′ + = nlIu M Ku M F             (2.26) 
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where I  is the identity matrix. The inverse of the mass matrix is then expanded 

into a Taylor series up to cubic order. The normal mode natural frequencies are 

determined from the conservative system, 0′′ + =Iu Ku , and are given by: 

( ) ( )( ) ( )
3 42

1 22 2
6 7

( ) ( )
( )

2 8 1 1 8 1 8

p k p k
k

r a c c x aα α

−
ω =

⎡ ⎤+µ + + +µ µ − − µ⎣ ⎦

                (2.27a) 

( ) ( )( ) ( )
3 42

2 22 2
6 7

( ) ( )
( )

2 8 1 1 8 1 8

p k p k
k

r a c c x aα α

+
ω =

⎡ ⎤+µ + + +µ µ − − µ⎣ ⎦

                 (2.27b) 

where 3 ( )p k  and 4 ( )p k  are given in Appendix B. 1 1 / αω = ω ω , and 2 2 / αω = ω ω . 

The corresponding modal matrix is: 

1 2

1 1
( )

( ) ( )
k

p k p k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

P             (2.28) 

where 1( )p k  and 2 ( )p k  are the modal ratios given in Appendix B. The following 

coordinate transformation is introduced: 

( ) ( ) ( )kτ = τu P v                 (2.29) 

where 1

2

v ( )
( )

v ( )
τ⎧ ⎫

τ = ⎨ ⎬τ⎩ ⎭
v  are the principal coordinates. The equations of motion 

become: 

( )1 2 1 2
ˆ(τ) ( ) (τ) v (τ),v (τ),v (τ),v (τ),k k′′ ′ ′+ = nlIv Λ v F                 (2.30) 

where 
2
1

2
2

( ) 0
( )

0 ( )
k

k
k

⎛ ⎞ω
= ⎜ ⎟

ω⎝ ⎠
Λ ,    ( ) 1

1 2 1 2

2

ˆ
ˆ v ,v ,v ,v ,

ˆ
nl

nl

F
k

F

⎧ ⎫⎪ ⎪′ ′ = ⎨ ⎬
⎪ ⎪⎩ ⎭

nlF , 2
0 0uY Y= Ω , 

( ){ 2 2 2
1 3 2 4 1 5 2 6 1 2 7 1 2 8 2 2 1

ˆ v v v v v v v v v vnlF q q q q q q′ ′ ′ ′ ′ ′= ε + + + + +  

( )2 2 3 3
9 1 10 1 2 11 2 2 12 1 13 2 14 1 15 2v v v v v v v v vq q q q q q q′ ′ ′ ′ ′ ′+ + + + + + +  
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( ) ( ) ( ) ( )}2 2
16 2 17 1 18 2 1 19 1 20 2 2 1 2 2 1 0v v v v v v v v v sinuq q q q q q q Y′ ′ ′ ′+ + + + + − + Ωτ  

 

( ){ 2 2 2
2 3 2 4 1 5 2 6 1 2 7 1 2 8 2 2 1

ˆ v v v v v v v v v vnlF s s s s s s′ ′ ′ ′ ′ ′= ε + + + + +  

( )2 2 3 3
9 1 10 1 2 11 2 2 12 1 13 2 14 1 15 2v v v v v v v v vs s s s s s s′ ′ ′ ′ ′ ′+ + + + + + +  

( ) ( ) ( ) ( )}2 2
16 2 17 1 18 2 1 19 1 20 2 2 1 2 2 1 0v v v v v v v v v sinus s s s s s s Y′ ′ ′ ′+ + + + + − + Ωτ  

and a prime denotes differentiation with respect to the non-dimensional time τ . 

1 20...q q , and 1 20...s s  are coefficients that depend on the airflow speed. The solution 

of these equations is obtained using the multiple-scales method [112]. The 

method requires to express the solution in terms of two time scales 0T = τ  and 

1T = ετ  

( ) ( ) ( )1 10 0 1 11 0 1v , v , v , ...T T T Tτ ε = + ε + , ( ) ( ) ( )2 20 0 1 21 0 1v , v , v , ...T T T Tτ ε = + ε +    (2.31a,b) 

Substituting equations (2.31) into equations (2.30) and collecting terms of 

the same order of ε , the following equations are obtained: 

Equations of order 0ε  are: 

2 2
0 10 1 10v v 0D +ω =                    (2.32a) 

2 2
0 20 2 20v v 0D +ω =           (2.32b) 

Equations of order ε  are: 

( )2 2 2 2 2
0 11 1 11 3 20 4 0 10 5 0 20 6 0 10 0 20 7 0 10 20 8 0 20 20 10v v v v v v v v v v v vD q q D q D q D D q D q D+ω = + + + + +  

( )2 2 3 3
9 0 10 10 0 10 0 20 11 0 20 20 12 0 10 14 10 13 0 20 15 20v v v v v v v v vq D q D D q D q D q q D q+ + + + + + +  

( ) ( )2 2
16 20 17 0 10 18 0 20 10 19 0 10 20 0 20 20v v v v v v vq q D q D q D q D+ + + + +  
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( ) ( )0 0
1 20 2 10 0 0 1 10

1 v v 2 v
2

i T i T
ui q q Y e e D D− Ω Ω ⎫− + − − ⎬

⎭
                     (2.33a) 

( )2 2 2 2 2
0 21 1 21 3 20 4 0 10 5 0 20 6 0 10 0 20 7 0 10 20 8 0 20 20 10v v v v v v v v v v v vD s s D s D s D D s D s D+ω = + + + + +  

( )2 2 3 3
9 0 10 10 0 10 0 20 11 0 20 20 12 0 10 14 10 13 0 20 15 20v v v v v v v v vs D s D D s D s D s s D s+ + + + + + +  

( ) ( )2 2
16 20 17 0 10 18 0 20 10 19 0 10 20 0 20 20v v v v v v vs s D s D s D s D+ + + + +  

( ) ( )0 0
1 20 2 10 0 0 1 10

1 v v 2 v
2

i T i T
ui s s Y e e D D− Ω Ω ⎫− + − − ⎬

⎭
                 (2.33b) 

The zeroth-order solution is: 

( ) [ ] [ ]1 0 1 0
10 0 1 1 1v , i T i TT T A T e A T eω − ω= + ;  ( ) [ ] [ ]2 0 2 0

20 0 1 1 1v , i T i TT T Q T e Q T eω − ω= +  (2.34a,b) 

Equations (2.33) contain secular terms, which give rise to following resonance 

conditions:  

(a) Combination parametric resonance 1 2Ω = ω +ω , i.e., 1 2Ω = ω +ω   

(b) One-to-one internal resonance 1 2ω = ω  

(c) One-to-three internal resonance 1 23ω = ω  

(d) Three-to-one internal resonance 1 23ω = ω  

The third and fourth resonance conditions are excluded because 

Theodorsen’s theory is only applicable near flutter speed, i.e., when  1 2ω ≈ ω . The 

first two cases will be considered.  

 

2.4.2 RESPONSE AT ZERO FLOW SPEED 

The results of the previous section revealed that the normal mode 

frequencies in the absence of air flow are not equal and possess the ratio 
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1 2/ 0.5ω ω = . Setting secular terms12 corresponding to the combination parametric 

resonance, 1 2Ω = ω +ω , to zero and introducing the detuning parameter eσ , 

defined by 1 2 eΩ = ω +ω + εσ , gives the solvability conditions 

( ) ( )1 2 2 2
1 0 12 1 14 17 1 4 1 3 19 1 5 2 1

1 3 2 2 0
2

ei T
uiq QY e iq A q iq q A A q iq q AQQ i Aσ ′+ ω + + ω + ω + + ω + ω − ω =

   (2.35a) 

( ) ( )1 2 2 2
2 0 13 2 15 20 2 11 2 16 18 2 9 1 2

1 3 2 2 0
2

ei T
uis AY e is Q s is s Q Q s is s QAA i Qσ ′+ ω + + ω + ω + + ω + ω − ω =

(2.35b) 

Introducing the following polar transformations 

1
1

iA b e β= ;   2
2

iQ b e β=     (2.36a,b) 

and separating imaginary and real parts gives the following  first-order differential 

equations: 

( )3 2 1
1 12 1 17 1 19 2 1 2 0 1 1 2

1

2 2 cos
2 u e
qb q b q b q b b b Y T′ = + + + σ −β −β
ω

     (2.37a) 

( ) ( )2 3 2 2 1
1 1 1 14 4 1 1 3 5 2 1 2 2 0 1 1 22 3 2 sin

2 u e
qb q q b q q b b b Y T′ ⎡ ⎤ω β = − + ω − + ω + σ −β −β⎣ ⎦         (2.37b) 

( )3 2 2
2 13 2 20 2 18 1 2 1 0 1 1 2

2

2 2 cos
2 u e
sb s b s b s b b bY T′ = + + + σ −β −β
ω

     (2.37c) 

( ) ( ) ( )2 2 2 3 2
2 2 2 16 9 1 2 1 15 11 2 2 1 0 1 1 22 2 3 sin

2 u e
sb s s b b s s b bY T′ω β = − + ω − + ω + σ −β −β        (2.37d) 

The above four algebraic equations contain three unknowns and the 

dependence on the detuning parameter will not appear explicitly. In this case, it is 

                                            

12 Secular terms are those terms with small divisor 
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possible to combine two of these equations into one through the following 

transformation: 

1 1 2e eTγ = σ −β −β   and  1 2 e e′ ′ ′β +β = σ − γ       (2.38) 

where a prime denotes differentiation with respect to 1T . The resulting equations 

are: 

( )3 2 1
1 12 1 17 1 19 2 1 2 0

1

2 2 cos
2 u e
qb q b q b q b b b Y′ = + + + γ
ω

   (2.39a) 

( )3 2 2
2 13 2 20 2 18 1 2 1 0

2

2 2 cos
2 u e
sb s b s b s b b bY′ = + + + γ
ω

  (2.39b) 

22
216 9 11 2 2 1 14 4 1

0 1
1 1 2 2 1 2

3sin
4 4 2e e u e

s sq b s b q qY b
b b

⎡ ⎤+ ω+ ω⎡ ⎤′γ = σ − + γ + +⎢ ⎥⎢ ⎥ω ω ω ω⎣ ⎦ ⎣ ⎦
 

2 2
215 11 2 3 5 2
2

2 1

3
2

s s q q b
⎡ ⎤+ ω + ω

+ +⎢ ⎥ω ω⎣ ⎦
            (2.39c) 

Equations (2.39) are numerically integrated for different values of 

excitation amplitude in the neighborhood of combination parametric resonance, 

i.e., 1 2Ω ≈ ω +ω , internal frequency ratio 1 2/ 0.5ω ω = , and the external excitation 

detuning parameter 0eσ = .  

• Over a very small range of excitation amplitude, 00 0.0008Y< < , the zero 

equilibrium is dynamically stable and the damping energy overcomes input 

energy. At a threshold value of excitation amplitude the equilibrium position 

loses its stability and both bending and torsion amplitudes achieve steady 

state values over the excitation amplitude range 00.0008 0.0018Y< < . Time 
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histories, phase diagrams, and FFTs for excitation level of 0 0.0015Y =  are 

shown in the Figure 2.4(a) which reveals harmonic oscillations.  

• Over the region 00.0018 0.003Y< < , the response amplitudes experience Hopf 

bifurcation.  

• The response then experiences another bifurcation in the form of period 

doubling over the region, 00.003 0.0055Y< <  as shown in the Figure 2.4(b) for 

an amplitude of excitation 0 0.005Y = .  

• Above that region, the response exhibits regular periodic (but not harmonic) 

oscillations (see Figure 2.4(c) for 0 0.01Y = ).  

• Figure 2.5 shows the bifurcation diagram using the initial conditions 

( )0 0.1u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = , and system parameters 1/ 38µ = , 

0.36a = − , 0.024xα = , 0.62rα = , 0.5r = , 0.001αζ = , 0.001uζ = , and 0.1d = . 

The bifurcation diagram reveals the upper and lower pairs of local maxima 

and minima by taking the excitation amplitude as the control parameter.  

 

2.4.3 RESPONSE AT CRITICAL AND POST-CRITICAL FLUTTER SPEEDS 

Introducing the external, eσ , and internal, iσ , detuning parameters, 

defined such that 1 2 eΩ = ω +ω + εσ  and 2 1 iω = ω + εσ , gives the solvability 

conditions: 

( )( ) ( )11 1 2 2
1 2 0 13 2 12 1 14 17 1 4 1

1 3
2

e ie ii Ti T i T
ui q Qe q Ae Y iq e Q iq A q iq q A Aσ +σσ σ+ + ω + ω + + ω + ω   

( ) (12 2
16 7 1 9 1 18 2 6 1 2 3 19 1 8 2

ii Tq iq q iq q e A Q q iq iq− σ+ + ω − ω − ω + ω ω + − ω + ω  
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) ( )1 122 2 2 2
10 1 2 5 2 15 20 2 11 23i ii T i Tq q e Q A q iq q e Q Qσ σ+ ω ω − ω + + ω + ω  

( ) ( )12 2
16 9 1 18 2 3 19 1 5 2 12 2 2 0ii Tq q iq e QAA q iq q AQQ i Aσ ′+ + ω + ω + + ω + ω − ω =  

                                  (2.40a) 
 

( )( ) ( )11 1 2 2
2 0 12 1 13 2 15 20 2 11 2

1 3
2

e ie ii Ti T i T
a ui s Ae s Qe Y is e A is Q s is s Q Qσ +σσ − σ+ + ω + ω + + ω + ω   

( ) (12 2
3 8 2 5 2 19 1 10 1 2 16 18 2 7 1

ii Ts is s is s e Q A s is isσ+ + ω − ω − ω + ω ω + − ω + ω  

) ( )1 122 2 2 2
6 1 2 9 1 14 17 1 4 13i ii T i Ts s e A Q s is s e A A− σ − σ+ ω ω − ω + + ω + ω  

( ) ( )12 2
3 5 2 19 1 16 18 2 9 1 22 2 2 0ii Ts s is e AQQ s is s QAA i Q− σ ′+ + ω + ω + + ω + ω − ω =  

                      (2.40b) 
 

Introducing the following polar transformations 

1
1

iA b e β= ;   2
2

iQ b e β=          (2.41a,b) 

and separating imaginary and real parts gives four first-order differential 

equations. By setting the left-hand sides of these equations to zero, one obtains 

four algebraic equations containing three unknowns, since the two phase angles 

are combined in one unknown. In addition, the dependency on the detuning 

parameter does not explicitly appear. In this case, one may introduce the 

following transformation: 

1 1 2e eTγ = σ −β −β , 1 1 2i iTγ = σ −β +β , 1 2 e e′ ′ ′β +β = σ − γ , 1 2 i i′ ′ ′β −β = σ − γ       (2.42) 

where a prime denotes differentiation with respect to 1T . The resulting equations 

are: 

3 2 13 21
1 12 1 17 1 19 2 1 2 0 2

1 1

2 2 cos cos
2 u e i

qqb q b q b q b b b Y bω′ = + + + γ + γ
ω ω
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[ ]
3
2

20 2 1
1

cos sini i
b q C+ ω γ + γ
ω

[ ]
2

1 2
2 3

1

cos sini i
b b C C+ γ + γ
ω

 

( )1
2 0

1

cos
2 u e i
b q Y+ γ + γ
ω

2 2
4 1 2 5 1 2cos 2 sin 2i iC b b C b b+ γ + γ                  (2.43a) 

( )3 2 2 12 1
2 13 2 20 2 18 1 2 1 0 1

2 2

2 2 cos cos
2 u e i
s sb s b s b s b b bY bω′ = + + + γ + γ
ω ω

 

[ ] [ ]
3 2
1 2 1

17 1 6 7 8
2 2

cos sin cos sini i i i
b b bs C C C+ ω γ − γ + γ − γ
ω ω  

( ) ( )22
1 0 2 1 9 10

2

cos cos 2 sin 2
2 u e i i i
b s Y b b C C+ γ − γ − γ + γ
ω

         (2.43b) 

{ 2 2 4 2
13 2 2 1 11 1 17 1

1 2 1 2

1 2 sin cos 2 sin
4e e i i iq b b C s

b b
γ σ ω γ ω γ ω γ

ωω
′ ⎡ ⎤= + − + +⎣ ⎦  

2 2
12 1 12 sin is bω γ+ ( )4 2

2 12 2 20 2cos 2 sini ib C qω γ ω γ+ − 2 2
13 1 2 cos iC b b γ+  

2 2 3
14 1 2 15 1 2sin 2iC b b C b bγ+ + 3

16 1 22 cos 2 iC b b γ+ 3
17 1 22 sin 2 iC b b γ+  

3
18 2 12C b b+ 3 3

19 2 1 20 2 12 cos 2 2 sin 2i iC b b C b bγ γ+ − 21 0 sinu eC Y γ−  

( ) ( )0 1 2 1 1 2 2sin sin }u e i e iY b b s q− − + +⎡ ⎤⎣ ⎦ω γ γ ω γ γ                       (2.43c) 

{ 2 2 4 2
13 2 2 1 22 1 17 1

1 2 1 2

1 2 sin cos 2 sin
4i i i i iq b b C s

b b
γ σ ω γ ω γ ω γ

ωω
′ ⎡ ⎤= + − − +⎣ ⎦  

2 2
12 1 12 sin is bω γ− ( )4 2

2 23 2 20 2cos 2 sini ib C qω γ ω γ+ − 2 2
24 1 2 cos iC b b γ+  

2 2 3
25 1 2 26 1 2sin 2iC b b C b bγ+ + ( )3

1 2 27 282 cos 2 sin 2i ib b C Cγ γ+ +  

3
29 2 12C b b+ ( )3

2 1 30 312 cos 2 sin 2i ib b C Cγ γ+ −  

( ) ( )32 0 0 1 2 1 1 2 2sin sin sin }u e u e i e iC Y Y b b s q+ + − − +⎡ ⎤⎣ ⎦γ ω γ γ ω γ γ            (2.43d) 

 
where the coefficients iC  are defined in Appendix C. Note that equations (2.43) 

contain four unknowns namely the response amplitudes, 1b , and 2b , and the two 

phase angles, eγ  and iγ . Furthermore, the dependency on the external and 
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internal detuning parameters explicitly appears in equations (2.43c) and (2.43d). 

The solution of these equations is obtained numerically for different values of 

excitation amplitude, at the critical and post-critical flutter speeds. In both cases, 

the response is estimated in the neighborhood of combination parametric 

resonance, i.e., 1 2Ω ≈ ω +ω , internal frequency ratio, 1 2/ 1ω ω ≈ , external 

excitation detuning parameter, 0eσ = , internal resonance detuning parameter 

0.061iσ = , and system parameters 1/ 38µ = , 0.36a = − , 0.024xα = , 0.62rα = , 

0.5r = , 0.001αζ = , 0.001uζ = , 0.1d = .  

 

2.4.3.1 Response at Critical Flutter Speed  

In the absence of parametric excitation, the solution of these equations 

reveals the coexistence of different fixed points implying LCO. Each fixed point is 

created from a certain domain of initial conditions. There are three possible 

values of the fixed point and each is achieved for certain values of initial 

conditions. The three fixed points are { }{ , } 0, 0u α = , { }0.15, 0.11− , and 

{ }1.4, 0.325 . The domains of attraction of each of the above fixed points are 

shown in Figure 2.6(a), where the empty space is belonging to the zero fixed 

point. 

• Under parametric excitation, the same scenario is preserved up to an 

excitation level 0 0.00875Y =  at which the response experiences Hopf 
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bifurcation13 around each fixed point in addition to a new fixed point that also 

experiences Hopf bifurcation. At 0 0.00875Y = , there are four different values 

of initial conditions, which lead to four different attractors. These initial 

conditions are:  { }' '
0 0 0 0, , ,u uα α =  { }0.5, 0.04, 0, 0 , { }0.5, 0.05, 0, 0 , { }0.5, 0.7, 0, 0 , 

and {0.45, 0.07,  }0, 0 . The domains of attraction corresponding to this case 

are shown in Figure 2.6(b).  

• Over another range of excitation amplitude, 00.00875 0.0125Y< < , the 

response experiences Hopf bifurcation for relatively high range of initial 

conditions below which the response settles at the static equilibrium position. 

For example, under excitation amplitude, 0 0.01Y = , the basin of attraction of 

this response is shown in Figure 2.6(c) and reveals that the basin of initial 

conditions that leads to non-zero response is shifted away to either higher 

positive values or negative values.  

• At excitation amplitude 0 0.0125Y =  an additional bifurcation around a new 

point takes place depending on the initial conditions. For example, the two 

sets of initial conditions { }0.3, 0.1, 0, 0−  and { }0.5, 0.1, 0, 0 , yield two different 

periodic attractors under 0 0.014Y = . Figure 2.6(d) shows the basins of 

attraction. In the first and third quadrants the basins of attraction are 

diminished to one positive or negative point, i.e., { }0.5, 0.1, 0, 0  or 

{ }0.5, 0.1, 0, 0− − . These two sets of initial conditions lead to large amplitude 

                                            

13 Hopf bifurcation implies the beginning of oscillatory motion 
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oscillations. Another two basins of attraction located in the second and fourth 

quadrants lead to another attractor of very small amplitude. As the excitation 

amplitude increases, additional bifurcations take place in the form of cascade 

of period doubling depending on initial conditions.  

• Figure 2.7 shows samples of time history records under no excitation, 0 0Y = , 

and initial conditions { }0.45, 0.01, 0, 0− . The response shows steady state.  

• Figures 2.8(a-d) show samples of time history records under excitation 

amplitude of 0 0.00875Y =  and different initial conditions. The plots show four 

harmonic attractors of different amplitude levels.  

• Figure 2.9 shows samples of time history records under excitation amplitude 

of 0 0.01Y =  and initial conditions { }0.5, 0.1, 0, 0 . Harmonic oscillations are 

obtained. 

• Figures 2.10 show samples of time history records, phase diagrams, and FFT 

plots under excitation amplitude 0 0.014Y = , and initial conditions 

{ }0.5, 0.1, 0, 0−  (Figure 2.10(a)) and { }0.5, 0.1, 0, 0  (Figure 2.10(a)). Two single 

periodic domains of attraction of different amplitude levels are obtained. Also 

it is seen that this is the critical point of bifurcation and any slight increase in 

amplitude will produce period doubling.  

• Figure 2.11(a) shows samples of time history records, phase diagrams, and 

FFT plots under excitation amplitude 0 0.015Y = , and initial conditions 

{ }0.5, 0.1, 0, 0− . It is seen that the bifurcation takes place in the form of period 

doubling. The domain of attraction of this attractor is slightly enlarged than the 
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corresponding case of Figure 2.6(d). There is another periodic attractor of 

period two shown in Figure 2.11(b), which oscillates with larger amplitude 

than the first attractor and emanates from one point of initial conditions in the 

first and third quadrants shown in Figure 2.6(e).  

• Under excitation amplitude 0 0.016Y = , the response experiences another 

bifurcation of period four as seen in the Figures 2.12(a, b). There are two 

different attractors similar to those displayed in Figure 2.6(e).  

• Any further increase of excitation amplitude results in chaotic motion as 

shown in Figures 2.13(a, b), which is generated under excitation amplitude 

0 0.017Y =  and different domains of attraction. The spectrum of the time 

history records is continuous.  

• The Poincaré maps displayed in Figures 2.13(a) and (b) do not cover a 

smooth closed curve but constitute a set of randomly scattered points 

implying that the motion turned out to be chaotic. The Poincaré maps are 

obtained based on the period of the first return. The domains of attraction 

corresponding to the small amplitude oscillation attractor are expanded as 

shown in Figure 2.6(f).  

• Figure 2.14 presents the bifurcation diagram by taking the excitation 

amplitude as the control parameter. It is seen that for a region of initial 

conditions, the parametric excitation acts as a stabilizer source of the wing 

flutter where under these regions the response achieves its static equilibrium 

position. Outside this domain of initial conditions, the equilibrium position 

loses its stability and the response may possess fixed points, Hopf 
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bifurcation, cascade of period doubling, and eventually chaotic motion. It is 

seen that at each bifurcation point, branches of symmetric and asymmetric 

periodic solutions meet in the form of supercritical symmetry-breaking 

bifurcation. 

It is obvious that the response exhibits multiple attractors, each with its 

own domain of attraction. One or two of these attractors, namely the zero 

response or small amplitude LCO about a small mean, are superior and 

desirable in the post flutter region. In order to achieve that desirable performance 

one may use one of the current techniques used to control chaos (see, e.g., 

[191]). For the present case, the domains of attractions of undesirable 

performance can be shifted away only by increasing the parametric excitation 

amplitude. Figure 2.15 shows the dependence of the percentage of domains of 

attraction that lead to non-zero flutter oscillation on the excitation amplitude. It is 

seen that as the excitation amplitude increases both the domains of attraction for 

low and large response amplitude decrease until critical excitation amplitude, 

0.01375crY ≈ , above which the parametric excitation suppresses the wing flutter.  

 

2.4.3.2 Response at Post-Critical Flutter Speed  

At a flow speed that is slightly higher than the critical flutter speed, 

/ 5.02U b∞ αω = , the wing enters in the post flutter region. In the absence of 

parametric excitation the wing experiences Hopf bifurcation of different amplitude 

oscillations depending on initial conditions. For all values of initial conditions 

occupied in Figure 16(a), there are two domains of response amplitudes. Low 
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oscillation amplitudes shown by the region of small solid triangles, ▲ , exemplified 

by the time histories shown the Figure 2.17(a); and large amplitudes shown by 

solid squares, ■, exemplified by the time histories shown the Figure 2.17(b). 

Under very small excitation amplitude, the response experiences multi-periods.  

• Over the excitation amplitude range, 00.001 0.003Y≤ < , the response 

experiences multi-periods with growing amplitudes. For example, under 

excitation amplitude, 0 0.0025Y = , Figures 2.18(a) and (b) show time history 

records, phase portraits, Poincaré mapping and FFT plots for two different 

sets of boundary conditions.  

• Over another excitation amplitude range, 00.003 0.005Y< < , there are two 

domains of attraction one of them leads to small amplitude oscillations with 

multi-period as in the previous range, while the other leads to periodic then 

cascade of period doubling with high amplitude oscillations. Figures 2.19(a) 

and (b) show samples of time history records, phase diagram, and FFT for 

the two cases under excitation amplitude 0 0.004Y = . Figure 2.19(a) includes 

also Poincaré maps.  

• The next region of excitation amplitude, 00.005 0.01Y< < , is characterized by 

chaotic motion for all possible initial conditions. However, one set of initial 

conditions leads to a chaotic attractor with small amplitude oscillations, while 

the other set leads to large amplitude oscillations as shown in Figures 2.20(a) 

and (b), respectively for 0 0.0075Y = . There is a small window around 0 0.01Y =  

characterized by period doubling for all possible initial conditions. Sample 
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time histories for 0 0.01Y =  under two sets of initial conditions are shown in the 

Figure 2.21. 

• A new regime of response behavior emerges at excitation level range, 

00.01 0.014Y< <  characterized by a train of spikes known as the “firing” state 

[185] for certain regions of initial conditions. The remaining initial conditions 

lead to periodic attractor. For example, under excitation amplitude, 0 0.013Y = , 

Figures 2.22(a) and (b) show typical time history records of the firing state. 

Figures 2.22(c) and (d) show the periodic regime. Figure 2.16(b) show the 

domains of attraction of these four attractors. Note the period between the 

spikes in the firing state varies substantially. As the excitation amplitude 

increases the period between the spikes (called the “refractory” or “recovery” 

period) increases and for the some initial condition the recovery period 

becomes infinitely large declaring a stabilization effect. Figures 2.23(a)-(c) 

show samples of time history records belonging to these regimes. Figure 

2.16(c) shows the domains of attraction that lead to these different attractors. 

At excitation levels, 0 0.015Y ≥ , the response achieves the zero equilibrium 

position.  

Figures 2.24(a) and (b) show the bifurcation diagram which summarizes 

all the above stated regimes. In order to appreciate the stabilization effect of 

parametric excitation, Figure 2.25 gives the dependence of the percentage of the 

area of domain of attraction on the excitation amplitude.        
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2.5. Numerical Simulations  

The purpose of the numerical simulation of the original equations of 

motion is to validate the multiple scales predictions. Equations (2.15) and (2.16) 

are numerically integrated for different values of excitation amplitude. The 

numerical integration is carried out in the absence of air flow and in the presence 

of air flow at the critical flutter speed for 1/ 38µ = , 0.36a = − , 0.024xα = , 0.62rα = , 

0.5r = , 0.001αζ = , 0.001uζ = , 0.1d = . The following subsections present just 

representative samples of the numerical simulation and are not considered 

exhaustive. 

 

2.5.1 ZERO FLOW SPEED 

Under parametric excitation with frequency close to the sum of the first 

two modes, 1 2Ω ≈ +ω ω , and normal modal frequencies ratio 1 2/ 0.5ω ω ≈ , the 

wing response is obtained for different excitation amplitudes. Under all values of 

excitation amplitude, the response of both bending and torsion exhibits periodic 

modulated signals as shown in Figures 2.26(a)-(d). At relatively low excitation 

amplitude, the modulation effect is very weak as demonstrated in Figure 2.26(a) 

and becomes significant as the excitation amplitude increases. The simulations 

are carried out for initial conditions ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = . 

The bifurcation diagram is shown in Figure 2.27 which is obtained for initial 

conditions ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = . 
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2.5.2 CRITICAL FLUTTER SPEED 

Under flutter flow speed / 4.965U b∞ αω =  and parametric excitation with 

frequency close to the sum of the first two mode frequencies, 1 2ω ωΩ = + , and 

internal frequencies having the relationship 2 1 0.061ω = ω + , the wing response is 

obtained for different values of excitation amplitudes and initial conditions. Under 

zero excitation amplitude, and depending on initial conditions, there exist two 

different LCOs as shown in the Figures 2.28(a, b). At excitation amplitude 

0 0.00875Y = , and depending on initial conditions the response either preserves 

the zero equilibrium as shown in Figure 2.28(c), or possesses multi-period 

oscillations as shown in Figure 2.28(d). These two attractors are maintained up 

to excitation amplitude 0.013 above which the response is attracted to either the 

zero response as shown in Figure 2.28(e) or to a chaotic motion as shown in 

Figure 2.28(f) for 0 0.014Y = . Note that the shown Poincaré maps are obtained 

based on the excitation period. As the excitation amplitude increases, say to 

0 0.016Y = , the chaotic regime is characterized by occasional spikes followed by 

relaxation period as shown in Figure 2.28(g). The zero response is not shown for 

this case. At excitation amplitude 0 0.017Y =  the non-zero response becomes 

more ordered after experiencing spiky transition period as shown in Figure 

2.28(h). 
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2.5.3 POST-CRITICAL SPEED 

At slightly higher value of flow speed than the critical flutter speed, say, 

/ 5.02U b∞ αω = , the numerical simulation is presented for selected values of 

excitation amplitude. At zero excitation amplitude the wing experiences LCOs in 

bending and torsion as shown in Figure 2.29(a). The zero attractor disappears for 

all excitation levels up to excitation amplitude of 0.013. As the excitation level 

increases from a low value up to 0.013, the response time history records 

experience multi-periods and Figures 2.29(b-e) show the sequence of 

development of the response time history records for different values of 

excitation amplitude. For excitation levels of 0.014, and above, the zero attractor 

emerges for certain domain of attraction in addition to a multi-period attractor 

depending on the initial conditions. For example, Figures 2.29(f) and (g) show 

time history records at excitation level 0.015 for two different sets of initial 

conditions. The domains of attraction that lead to zero attractor are enlarged as 

the excitation amplitude increases and this confirms the results predicted by the 

multiple scales method. 

 

2.6. Closing Remarks  

The nonlinear flutter of a cantilever wing is studied analytically and 

numerically in the absence and presence of parametric excitation. In the absence 

of nonlinearities, the regions of parametric instability are obtained for different 

values of flow speed. At the critical flutter speed the bottom of instability region 

touches the frequency axis. Below and above the critical speed the instability 
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regions move away from the frequency axis. The nonlinear flutter is studied using 

the method of multiple scales in the neighborhood of combination parametric 

resonance at the critical flutter speed and at flow speed that is slightly higher 

than the critical one. At critical flutter speed the response was found to possess 

more than one attractor each is obtained from a certain domain of initial 

conditions. As the excitation amplitude increases the responses experiences a 

cascade of period doubling and eventually chaotic motion. At critical excitation 

amplitude the response exhibits stabilization state to the zero equilibrium 

attractor over a wide range of initial conditions. The stabilization effect was also 

manifested at a flow speed that is slightly higher than the critical flutter speed. 

However, the stabilization effect was preceded by new phenomena such as firing 

and recovery states. The numerical simulation of the original equations of motion 

has confirmed the multiple scales findings. Because of the limitation of 

Theodorsen’s theory (valid only at flutter speed), the vortex lattice method 

proposed by Predikman [36] will be used to model aerodynamic loads in the next 

chapter. The aerodynamic loads will possess nonlinearities caused by the wakes. 

In addition, the wing structure, which is modeled linear, will have uncertainty in 

bending and torsion stiffnesses. 
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 (a) Plate-like cantilever wing showing the coordinate frame 
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Figure 2.1. Schematic diagram of the analytical model, coordinates axes, and 
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(a)              (b) 
 
  

Figure 2.2. Dependence of eigenvalue components on the flow speed parameter 
showing: (a) the influence of the imaginary component of circulation function, 

0G ≠  and (b) its absence, 0G = .   
________ Eigenvalue components in the presence of aerodynamic and structure 
damping; ……..  Eigenvalue components in the absence of aerodynamic and 

structure damping. 
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Figure 2.3. Stability boundaries in the neighborhood of parametric combination 
resonance at zero flow speed and at critical flow speed. 
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(a) 0 0.0015Y =  
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(c) 0 0.01Y =  
 

Figure 2.4. Time histories, phase diagrams, and FFTs at zero flow speed, 
1 2Ω = ω +ω , 1 20.5ω = ω , 0eσ = , ( )0 0.1u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
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Figure 2.5. Bifurcation diagram at zero flow speed estimated at 1 2Ω = ω +ω , 

1 20.5ω = ω , for 0eσ = , ( )0 0.1u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = . 
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Figure 2.6 Domains of attractions for different values of excitation amplitude. (a) 
0 0Y = ; (b) 0 0.00875Y = ; (c) 0 0.01Y = ; (d) 0 0.014Y = ; (e) 0 0.015Y = ; (f) 0 0.017Y =  
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Figure 2.7 Time histories at critical flow speed / 4.965U b∞ αω = , 0 0Y = , 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = , ( )0 0.45u = , ( )0 0.01α = , ( )' 0 0u = , 

( )' 0 0α =  
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 (d) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
  

Figure 2.8 Time histories records at critical flow speed / 4.965U b∞ αω = , 

0 0.00875Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
 
 
 
 
 
 
 
 
 

Figure 2.9 Time histories at critical flow speed / 4.965U b∞ αω = , 

0 0.01Y = , 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = , ( )0 0.5u = , ( )0 0.1α = , 
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(b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
  

Figure 2.10 Time histories, phase diagrams, and FFTs at critical flow speed 
/ 4.965U b∞ αω = , 0 0.014Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = , 
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 (a) ( )0 0.5u = , ( )0 0.1α = − , ( )' 0 0u = , ( )' 0 0α =  
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 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.11 Time histories, phase diagrams, and FFTs at critical flow speed 
/ 4.965U b∞ αω = , 0 0.015Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = , 
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(a) ( )0 0.5u = , ( )0 0.1α = − , ( )' 0 0u = , ( )' 0 0α =  
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 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.12 Time histories, phase diagrams, and FFTs at critical flow speed 
/ 4.965U b∞ αω = , 0 0.016Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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 (a) ( )0 0.5u = , ( )0 0.1α = − , ( )' 0 0u = , ( )' 0 0α =
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 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.13 Time histories, Poincare maps, phase diagrams, and FFTs at critical 
flow speed / 4.965U b∞ αω = , 0 0.017Y = , 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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(a) Dependence of bending amplitude on excitation amplitude 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Dependence of torsion amplitude on excitation amplitude 
 

Figure 2.14 Bifurcation diagrams at critical flow speed / 4.965U b∞ αω = , 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = . 
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Figure 2.15 Stabilization effect of parametric excitation at critical flow speed 
/ 4.965U b∞ αω =  showing the percentage of domains of attraction for large 

amplitude response (solid diamond curve) and large plus small amplitude 
responses (dotted solid circle curve). 
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                                (a)           (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  
 

Figure 2.16. Domains of attraction at post-critical flow speed / 5.02U b∞ αω =  for 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ = , and different values of excitation 
amplitude. (a) 0 0Y = ; (b) 0 0.013Y = ; (c) 0 0.014Y = . 
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 (a) ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.17 Time histories at post-critical flow speed / 5.02U b∞ αω = , 0 0Y = ; 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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(a) ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
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(b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.18 Time histories, Poincare maps, phase diagrams, and FFTs at post-
critical flow speed / 5.02U b∞ αω = , 0 0.0025Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 

0.061iσ =  
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(a) ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
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(b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.19 Time histories, Poincare maps, phase diagrams, and FFTs at post-
critical flow speed / 5.02U b∞ αω = , 0 0.004Y = , 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 

0.061iσ =  
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 (a) ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
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 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.20 Time histories, Poincare maps, phase diagrams, and FFTs at post-
critical flow speed / 5.02U b∞ αω = , 0 0.0075Y = ; 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 

0.061iσ =  
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 (a) ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (b) ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.21 Time histories at post-critical flow speed / 5.02U b∞ αω = , 0 0.01Y = ; 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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(a) ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 

 (b) ( )0 0.1u = , ( )0 0.02α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 

 (c) ( )0 0.2u = , ( )0 0.02α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 

 (d) ( )0 0.4u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.22 Time histories at post-critical flow speed / 5.02U b∞ αω = , 0 0.013Y = ; 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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 (a) ( )0 0.3u = , ( )0 0.02α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 

 (b) ( )0 0.35u = , ( )0 0.02α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 

 (c) ( )0 0.25u = , ( )0 0.07α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.23 Time histories at post-critical flow speed / 5.02U b∞ αω = , 0 0.014Y = ; 

1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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(a) Dependence of bending amplitude on excitation amplitude 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Dependence of torsion amplitude on excitation amplitude 
 

Figure 2.24 Bifurcation diagrams showing different regions of response behavior 
at post-critical flow speed / 5.02U b∞ αω = , 1 2Ω = ω +ω , 1 2ω = ω , 0eσ = , 0.061iσ =  
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Figure 2.25 Stabilization effect of parametric excitation at post-critical flow speed 
/ 5.02U b∞ αω =  showing the percentage of domains of attraction for large 

amplitude response (diamond-solid curve) and large plus small amplitude 
responses (star-dotted curve). 
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 (a) 0 0.001Y =  
 
 
 
 
 
 
 
 

 (b) 0 0.005Y =  
 
 
 
 
 
 
 

 (c) 0 0.01Y =  
 
 
 
  
 
 
 
 
 

 (d) 0 0.015Y =  
 

Figure 2.26 Response time history records according to numerical simulation at 
zero flow speed for different values of excitation amplitude and for the same 

initial conditions  ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = . 
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(a) Dependence of bending response amplitude on excitation amplitude 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Dependence of torsion response amplitude on excitation amplitude 
 

Figure 2.27 Bifurcation diagram according to the numerical simulation of 
equations of motion at zero flow speed and 1 2Ω = ω +ω , 1 20.5ω = ω , ( )0 0.5u = , 

( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α = . 
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 (a) 0 0Y = , ( )0 0.05u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (b) 0 0Y = , ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 
 

 (c) 0 0.00875Y = , ( )0 0.4u = , ( )0 0.02α = , ( )' 0 0u = , ( )' 0 0α =  
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 (d) 0 0.00875Y = , ( )0 0.5u = , ( )0 0.04α = , ( )' 0 0u = , ( )' 0 0α =  
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 (e) 0 0.014Y = , ( )0 0.2u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (f) 0 0.014Y = , ( )0 0.5u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =
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 (g) 0 0.016Y = , ( )0 0.6u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
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 (h) 0 0.017Y = , ( )0 0.6u = , ( )0 0.1α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.28 Numerical solution time histories, phase diagrams (d, f, g, h), 
Poincare maps (f, g, h), and FFT (d, f, g, h) at flutter speed / 4.965U b∞ αω = , 

1 2Ω = ω +ω , 2 1 0.061ω = ω +  

u

τ

α

τ

u

τ

α

τ
u′

u α

′α

u′

u α

′α

u

/ αω ω

α

/ αω ω



www.manaraa.com

132 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) 0 0Y = , ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
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 (b) 0 0.001Y = , ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (c) 0 0.005Y = , ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (d) 0 0.0075Y = , ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 

 (e) 0 0.01Y = , ( )0 0.1u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
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 (f) 0 0.015Y = , ( )0 0.2u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (g) 0 0.015Y = , ( )0 0.3u = , ( )0 0.01α = , ( )' 0 0u = , ( )' 0 0α =  
 

Figure 2.29 Numerical solution time histories, phase diagrams (a, g), and FFTs 
(a, g) at post critical flow speed / 5.02U b∞ αω = , 1 2Ω = ω +ω , 2 1 0.061ω = ω +  

u

τ

α

τ

u

τ

α

τ

u′

u α

′α

u′

u α

′α

u

/ αω ω

α

/ αω ω



www.manaraa.com

135 

 

CHAPTER 3 

INFLUENCE OF PARAMETER UNCERTAINTIES ON THE  

FLUTTER OF A CANTILEVER WING 

3.1 Introduction 

The present chapter deals with the influence of stiffness uncertainties on 

the flutter behavior of an aeroelastic wing. The numerical algorithm originally 

developed by Predikman and Mook [36] will be adopted. This algorithm has been 

originally developed to simulate unsteady, nonlinear, incompressible flow 

interacting with linear aeroelastic wing in the absence of uncertainties. In order to 

implement this algorithm in the presence of uncertainties we introduce a random 

field that represents bending or torsion stiffness parameters or both as a 

truncated Karhunen-Love (K-L) expansion [94]. The air flow and wing structure 

are treated as elements of a single dynamic system. Both perturbation technique 

and Monte Carlo simulation are used to determine the boundary of stiffness 

uncertainty level at which the wing exhibits limit cycle oscillation (LCO) and 

above which the wing experiences dynamic instability. The analysis also includes 

the limitation of perturbation solution for relatively large level of stiffness 

uncertainty.  

The analytical modeling of aerodynamic loading based on the unsteady 

vortex lattice method, structural forces interacting with the aerodynamic loading, 

and stiffness uncertainties based on Karhunen-Loeve expansion are briefly 

described in sections 3.2 through 3.4, respectively. Section 3.5 establishes the 

entire system modeling by combining the three models (aerodynamic, structure, 
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and uncertainty) in the wing governing equations of motion in the finite element 

discretized form. Sections 3.6 and 3.7 present the perturbation analysis solution 

and Monte Carlo simulation results, respectively. Part of this work was submitted 

for possible publication to AIAA Journal. 

 

3.2. Aerodynamic Modeling 

The aerodynamic modeling requires the estimation of aerodynamic forces 

and at the same time accounts for the wing elastic deformation. This is achieved 

by using the unsteady vortex lattice method [24]. The theoretical background 

which includes the theorems and laws that lead to the unsteady vortex lattice 

method as well as a detailed description of the method are given in the Appendix 

D.  In the framework of vortex lattice method, the lifting surface is approximated 

by a set of lattices of short segments of constant circulation. Each segment 

occupies a portion of the wing surface and is enclosed by a loop of vortex 

segments. Figure 3.1 shows the discretization of the lifting surface, where the N-

frame is the ground fixed coordinate system and B-frame is the coordinate 

system on the wing body and is moving with the wing. The leading segment of 

the vortex loop is located at a distance equivalent to quarter of the panel length. 

The velocities are calculated at a finite number of points named control or 

collocation points. The control points are located at the lattice center. Figure 3.2 

represents the position of an arbitrary control point P  on the lattice as a result of 

the wing structure displacement. Point 0P  represents point P  before the wing is 

deformed. The position of 0P  is given by the vector 0R  in the N-frame and the 
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vector 0r  in the B-frame. The position of P  is given by the vector R  in the N-

frame and the vector r  in the B-frame. The displacement of point P  due to the 

wing deformation is, 
PA∆r . The position of the B-frame relative to N-frame is BR . 

The vectors R  and r  can be represented as functions of the wing displacement, 

PA∆r , i.e., 0 PA= + ∆R R r , and 0 PA= + ∆r r r . In order to estimate the pressure at 

point P, one can use Bernoulli’s equation for unsteady flow: 

 
( ) ( ) ( ) ( ) ( )1

2 F F

t p t
t t H t

t
∂Φ

+ ⋅ + =
∂

V V
ρ

                           (3.1) 

 
where Φ  is the total velocity potential function, ( )p t  is the pressure at point P, ρ  

is the fluid density, ( )H t  is a spatially uniform function of time, and FV  is the flow 

absolute velocity given by:  

 
F B W∞= + +V V V V                                         (3.2) 

 
where ∞V  is the free stream velocity, BV  is the velocity due to the bound vortex 

lattices associated to the boundary layer on the surface of the wing, WV  is the 

velocity due to the free vortex lattices representing the wakes (see Figure 3.3(a)). 

As →∞R , ∞Φ→Φ =constant, F ∞→V V , ρ ρ∞→ , p p∞→ , and ( ) 1
2

H t ∞ ∞= ⋅V V  

/p ρ∞ ∞+ . In this case equation (3.1) takes the form: 

 
1 1
2 2F F

pp
t

∞
∞ ∞

∞

∂Φ
+ ⋅ + = ⋅ +

∂
V V V V

ρ ρ
                            (3.3) 
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Alternatively, one may rewrite equation (3.3) in terms of the pressure coefficient 

pC  as: 

 
2

2 2

21
/ 2

F
p

p p VC
V V V tρ

∞

∞ ∞ ∞

⎛ ⎞− ∂Φ
= = − −⎜ ⎟ ∂⎝ ⎠

                                   (3.4)  

 
Introducing the non-dimensional parameters, CT tτ = , / CL= =R R  0( / )CLR  

( / )
PA CL+ ∆ =r 0 PA+ ∆R r , F =V /F V∞V , and Φ  / CL V∞= Φ , where /C CT L V∞=  is a 

characteristic time, and CL  represents the chord-wise length of one element on 

the bound lattice. Equation (3.4) takes the form: 

 

( )2
1 2p FC V

τ
∂Φ

= − −
∂

                                         (3.5) 

 
The pressure coefficient variation across the lattice surface is: 

 
( ) ( )p p P UL

C C C∆ = −                                          (3.6) 

 

where ( ) 21 2
L

p FLL
C V

τ
∂Φ⎡ ⎤= − − ⎢ ⎥∂⎣ ⎦R

 and ( ) 21 2
U

p FUU
C V

τ
∂Φ⎡ ⎤= − − ⎢ ⎥∂⎣ ⎦R

 are the pressure 

coefficients below and above the vortex lattice, respectively. One may write 

equation (3.6) in the form: 

 

2 2 2
U L

p FU FLC V V
⎛ ⎞⎡∂Φ⎤ ⎡∂Φ ⎤

∆ = − + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠R Rτ τ
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2 2
U L

mP P

⎛ ⎞⎡∂Φ⎤ ⎡∂Φ ⎤
≈ ⋅∆ + −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠R R

V V
τ τ

                (3.7) 

 
where P∆V  is the non-dimensional tangential velocity difference across the 

vortex lattice and mPV  is the “mean” velocity which does not recognize the 

presence of the local vorticity. ,m PV  can be considered as the flow velocity at the 

midpoint of the vortex sheet thickness. For a general element, shown in Figure 

3.3(b), the jump in the tangential velocity in dimensional form across the vortex 

sheet can be expressed as [25]: 

 

P
PA
×

∆ = −
n ΓV                  (3.8) 

 
where n  is the unit normal vector at the control point, PA  is the area of the 

element, and Γ  is a vector given by the expression 

 
31 2 4

1 2 3 42 2 2 2
ΓΓ Γ Γ

= + + +Γ L L L L       (3.9) 

 
1,...,4Γ  are the circulations of the segments 1,...,4L . With reference to Figure 3.3(b), 

for two adjacent elements with common circulation, say 4Γ , and whose control 

points are P  and Q  possessing circulation loops PG  and QG  respectively, the 

value of 4Γ  is Q PG G− . The expression for 
U L

τ τ
∂Φ ∂Φ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦R R

 can be evaluated at 
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point P  in terms of the non-dimensional velocity increment /P P ∞∆ = ∆V V V , as 

[25]: 

 

( )
U L

P

P

D G
D

⎛ ⎞⎡∂Φ⎤ ⎡∂Φ⎤ ⎡ ⎤− =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎜ ⎟∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠R R

τ
τ τ τ

N B B P N B B P
P ⎡ ⎤−∆ ⋅ + + ×⎣ ⎦V v r ω r        (3.10) 

 
where PG  is the circulation loop in non-dimensional form of the vortex lattice 

element which encloses the control point P , N Bv  is the absolute velocity of BO , 

B Pr  and B Pr  the position and velocity of P  relative to the B-frame, respectively, 

and N Bω  is the angular velocity of the B-frame.  

Introducing equation (3.10) into equation (3.7) gives the final expression 

for the pressure coefficient variation across the lattice surface at point P : 

 

2 N B B P
p P mPC ⎡∆ = ∆ ⋅ − −⎣V V v r 2N B B P

P
D G
D

⎤ ⎡ ⎤− × + ⎣ ⎦⎦ω r
τ

                 (3.11) 

 
The non-dimensional aerodynamic load at point P  can be computed in terms of 

pC∆ : 

 

,A P p PC A= ∆F n {2 N B
P mP⎡= ∆ ⋅ −⎣V V v  B P B B P

P P
D G A
D

⎫⎤ ⎡ ⎤− − × + ⎬⎣ ⎦⎦ ⎭
r ω r n

τ
     (3.12) 

 
where 2/P P CA A L=  is the non-dimensional area of the element P .  The 

expression for the aerodynamic load at point P  in dimensional form is: 

 
( ) ( ) ( )2 2

, ,/ 2A P C A Pt V L∞ ∞
⎡ ⎤= ρ τ⎣ ⎦F F                (3.13) 
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This aerodynamic force is interacting with the elastic and inertia forces of the 

wing structure and their modeling is given in the next section. Note that this 

aerodynamic force is acting at the center of each lattice as shown in Figure 3.4. 

 

3.3. Structural Modeling 

Figure 3.5 shows a cantilever wing with a straight elastic axis at distance 

3δ  from the inertia axis. The wing is modeled as an Euler-Bernoulli beam. The 

coordinate system coincides with B-frame coordinate system from the 

aerodynamic modeling. The governing equations of motion are obtained using 

Lagrange’s equation. The kinetic energy of the wing is: 

 

( ) ( ) ( ) ( )2 2 2

3
0

, v , , ,1
2

L u y t y t w y t y t
KE m dy

t t t t

⎡ ⎤∂ ∂ ∂ ∂α⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= + + + δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∫  

( ) 2

0
0

,1
2

L y t
I dy

t
⎛ ⎞∂α

+ ⎜ ⎟∂⎝ ⎠
∫                                         (3.14) 

 
where ( ),u y t , ( )v ,y t , and ( ),w y t  are the displacements along x -, y -, z -

directions, respectively, ( ),y tα  is the torsion angle, m  is mass per unit length, 0I  

is mass moment of inertia (about inertia axis) per unit length, and L  is the wing 

length.  

The strain energy is: 

 
( ) ( )2 22 2

2 20 0

, ,1 1
2 2

L L

x z

w y t u y t
PE EI dy EI dy

y y
⎧ ⎫ ⎧ ⎫∂ ∂

= +⎨ ⎬ ⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭
∫ ∫  
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( ) 22

0 0

,1 v 1
2 2

L L y t
AE dy cGJ dy

y y
⎛ ⎞∂α⎧ ⎫∂

+ +⎨ ⎬ ⎜ ⎟∂ ∂⎩ ⎭ ⎝ ⎠
∫ ∫                          (3.15) 

 
where A  is the wing cross-sectional area, E  is Young's modulus, xI  is the area 

moment of inertia of the wing cross-section about x  axis, zI is the area moment 

of inertia of the wing cross-section about z  axis, J  is the polar moment of inertia 

of the wing cross-section about z  axis, G  is the modulus of rigidity, and c  is a 

factor accounting for the non-circular geometry of the wing cross-section.  

The work done by external forces and moments: 

 

( ) ( ) ( ) ( )v
0 0 0 0

, v , , ,
L L L L

u wW F u y t dy F y t dy F w y t dy M y t dyα= + + + α∫ ∫ ∫ ∫      (3.16) 

 
where uF , vF , and wF  are the external forces acting along x-, y-, and z-

directions, respectively, and Mα  is the external moment about the inertia axis. 

  The wing is divided into elements as shown in Figure 3.6(a), where a 

single element with two nodes is shown in Figure 3.6(b). The displacements of 

each element, ( ),u y t , ( )v ,y t , and ( ),w y t , are expressed in terms of the nodal 

displacements iu , vi , iw  in x , y , and z  directions, respectively, and nodal 

rotations iβ , iα , iγ  about x , y , and z  axes, respectively. The relationships 

between the element and nodal displacements are 

 

( ) ( ) ( ), = Y uT
u eu y t y t ,    ( ) ( ) ( )vv , = Y vT

ey t y t  
(3.17) 



www.manaraa.com

143 

 

( ) ( ) ( ), = Y wT
eww y t y t ,    ( ) ( ) ( ), αα = Y αT

ey t y t  

where ( ) ( ) { }3 5 4 6= =Y YT T
wu y y Y Y Y Y ,           ( ) ( ) { }1 2v α= =Y YT Ty y Y Y ,   

1

1

+

+

⎧ ⎫
⎪ ⎪γ⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪γ⎩ ⎭

u

i

i
e

i

i

u

u
,      

1

v
v +

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

v i
e

i

,        ( )
1

1

+

+

⎧ ⎫
⎪ ⎪β⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪β⎩ ⎭

w

i

i

i

i

e

w

t
w

,      ( )
1+

α⎧ ⎫
= ⎨ ⎬α⎩ ⎭

α i

i
e t  

,jY  1,2,...,6j =  are the shape functions given by the expressions [192]  

 

1
1

1

i

i i

y yY
y y

+

+

−
=

−
, 2

1

i

i i

y yY
y y+

−
=

−
, 

2 3

3
1 1

1 3 2i i

i i i i

y y y yY
y y y y+ +

⎛ ⎞ ⎛ ⎞− −
= − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

,
2

4
1

3 i

i i

y yY
y y+

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 

3

1

2 i

i i

y y
y y+

⎛ ⎞−
− ⎜ ⎟−⎝ ⎠

, ( ) ( )
( )

( )2 3
5 2

1 1

2 1
i i i

i i i i

Y y y y y y y
y y y y+ +

= − − − + −
− −

, 

( )2
6

1

1
i

i i

Y y y
y y+

= − −
− ( )

( )3
2

1

1
i

i i

y y
y y+

+ −
−

,    1i iy y y +≤ ≤ .    (3.18) 

 
Introducing equation (3.17) into equations (3.14-3.16), and applying 

Lagrange’s equation to each coordinate, gives the following set of equations of 

motion: 

 

( ) ( ) ( )
1 1 1

( ) ( ) ( ) ( ) ( )
+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

′′ ′′+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫Y Y u Y Y u Y
i i i

i i i

y y yT
T

u u e z u u e u u
y y y

m y y dy t EI y y dy t F y dy  

(3.19a) 

 

( ) ( ) ( )
1 1 1

v v v v v v( ) ( ) ( ) ( ) ( )
+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

′ ′+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫Y Y v Y Y v Y
i i i

i i i

y y yT
T

e e
y y y

m y y dy t AE y y dy t F y dy     

(3.19b) 
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( ) ( )
1 1

3( ) ( ) ( ) ( )
+ +

α

⎛ ⎞ ⎛ ⎞
+ δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫Y Y w Y Y α
i i

i i

y y
T T

w w e w e
y y

m y y dy t m y y dy t  

( ) ( )
1 1

( ) ( ) ( )
+ +⎛ ⎞ ⎛ ⎞

′′ ′′+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫Y Y w Y
i i

i i

y yT

x w w e w w
y y

EI y y dy t F y dy               (3.19c) 

 

( ) ( )
1 1

3( ) ( ) ( ) ( )
+ +

α α α α

⎛ ⎞ ⎛ ⎞
+ δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫Y Y α Y Y w
i i

i i

y y
T T

e w e
y y

I y y dy t m y y dy t  

( ) ( )
1 1

( ) ( ) ( )
+ +

α α α α

⎛ ⎞ ⎛ ⎞
′ ′+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫Y Y α Y
i i

i i

y yT

e
y y

cGJ y y dy t M y dy              (3.19d) 

 
where a prime denotes a derivative with respect to spatial variable, y . Equations 

(3.19) may be written in the matrix form: 

 
e e e e eM U + K U = F             (3.20) 

 
where 

 
1 1 1

v v( ) ( ) ( ) ( ) ( ) ( )
+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫M Y Y Y Y Y Y
i i i

i i i

y y y
e T T T

u u w w
y y y

m y y dy m y y dy m y y dy  

1

3 ( ) ( )
+⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠
∫ Y Y
i

i

y
T

w
y

m y y dyαδ
1 1

3( ) ( ) ( ) ( )
+ +

α α α α

⎛ ⎞ ⎛ ⎞
+ + δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫Y Y Y Y
i i

i i

y y
T T

w
y y

I y y dy m y y dy         

(3.21a) 
 

( ) ( )
1 1

v v( ) ( ) ( ) ( )
+ +⎛ ⎞ ⎛ ⎞

′′ ′′ ′ ′= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫K Y Y Y Y
i i

i i

y yT T
e

z u u
y y

EI y y dy AE y y dy  

( )
1

( ) ( )
+⎛ ⎞

′′ ′′⎜ ⎟⎜ ⎟
⎝ ⎠
∫ Y Y
i

i

y T

x w w
y

EI y y dy ( )
1

( ) ( )
+

α α

⎛ ⎞
′ ′+ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ Y Y
i

i

y T

y

cGJ y y dy                      

(3.21b) 
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1 1 1 1

v v( ) ( ) ( ) ( )
i i i i

i i i i

y y y y
e
s u u w w

y y y y

F y dy F y dy F y dy M y dy
+ + + +

α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫F Y Y Y Y      (3.21c) 

 
{ }1 1 1 1 1 1v v Te

i i i i i i i i i i i iu w u w+ + + + + += β α γ β α γU        (3.21d) 

 
Equation (3.20) constitutes the governing equations of motion for a single 

element without uncertainties. The inclusion of material uncertainties will be 

considered in the next section. 

 

3.4. Modeling of Material Uncertainties 

Material uncertainty is considered for bending and torsion stiffness 

parameters. Let the bending and torsion stiffness parameters be represented in 

the form,  

 

( ) ( )
___

x xxEI y EI EI y= + ,              ( ) ( )
___

GJ y GJ GJ y= +                 (3.22a) 
  

The mean values 0>>
___

xEI , and 0>>
___
GJ  are assumed to be much larger 

than the root-mean-square of the random field variability represented by ( )xEI y  

and ( )GJ y . Both ( )xEI y  and ( )GJ y  are assumed to be Gaussian distributed 

with zero mean and their standard deviations 
xEIσ , and GJσ  are much smaller 

than the corresponding mean value, i.e., / 1
x xEI EIσ , and / 1GJ GJσ . This 

implies that the stiffness parameters ( )xEI y  and ( )GJ y  form positive-valued 

random fields. Let the stiffness parameters be represented by the random 
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function ( y, )χ θ , where θ  is a parameter that belongs to the space of random 

events and [ / 2, / 2]y L L∈ − . The random field ( ),yχ θ  can be expressed by the 

truncated Karhunen-Loeve (K-L) expansion [94]: 

 

( ) ( ) ( ) ( )
1

,
N

n n n
n

y y f y
=

χ θ = χ + ξ θ λ∑                          (3.22b) 

 
where ( )yχ  is the mean value of ( ),yχ θ ,  nλ  is some constant, ( )nf y  is a set of 

deterministic functions, and ( )
nξ θ  is the set of random variables with zero mean 

and ( ) ( )n m nmE ξ θ ξ θ = δ⎡ ⎤⎣ ⎦ , nmδ  is the Kronecker delta.  nλ  and ( )nf y  are given by 

the solution of the integral equation 

 
/ 2

1 1 1
/ 2

( , ) ( ) ( )
L

n n n
L

C y y f y dy f yλ
−

=∫        (3.23) 

 
where 1( , )C y y  is the covariance kernel of the random field ( y, )χ θ .  

Expansion (3.22b) is mathematically well founded and is guaranteed to 

converge. In addition, it is optimum in the sense that it minimizes the mean 

square error resulting from truncating the series at a finite number of terms. The 

bending and torsion stiffness parameters will be modeled by one-dimensional 

Gaussian random field models with bounded mean squares. Ghanem and 

Spanos [94] and Loeve [111] showed that for a Gaussian process the K-L 

expansion is convergent. The covariance kernel of the random field ( y, )χ θ  may 

be assumed in the form: 
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1 /2
1( , ) cory y lC y y eχσ

− −=               (3.24) 

 
where 2

χσ  is the variance of the random field χ , such that ( )yσ χχ  implying 

that ( , )yχ θ  will always be positive, corl  is correlation length such that corl L→ . 

For one-dimensional Gaussian process, the eigenvalue problem (3.23) 

possesses the closed form analytical solution [94] 

 

( ) ( )
( )

cos

sin 2 / 2
2 2

n
n

n

n

y
f y

LL

ω

ω
ω

=

+

,  
2

2 2

2 /
1/

cor
n

n cor

l
l

χσλ
ω

=
+

                    (3.25a,b) 

 
where nω  are the eigenvalues of the characteristic equation: 

 
1 1tan tan 0

2 2cor cor

L L
l l

ω ω ω ω
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

                           (3.26) 

 
Introducing the expressions (3.25) into (3.22) the random field takes the form: 

 

( ) ( ) ( ) ( ) ( )
( )2 2

1

/, 2 cos
1/ sin 2 / 2

N
n cor

n n
n n cor n n

ly y y
l L Lχ

=

ω
χ θ = χ + ξ θ σ ω

ω + ω + ω⎡ ⎤⎣ ⎦
∑  

(3.27) 

 
For bending stiffness, the random field χ  is denoted by xEI  with mean value xEI  

and variance 2
xEIσ  and for torsion stiffness the random field χ  is denoted by cGJ  

with mean value cGJ  and variance 2
GJσ . Introducing equation (3.27) into 

elemental stiffness expression eK  given by equation (3.21b), the following 

expression is obtained: 
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( ) ( ) ( )
0 , ,

1 1

N N
e e e e

b n n t n n
n n= =

θ = + ξ θ + ξ θ∑ ∑K K K K                           (3.28) 

 
where 

 

( ) ( ) ( )
1 1 1

0 v v

i i i

i i i

y y yT T T
e

z u u x w w
y y y

EI dy AE dy EI dy
+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

′′ ′′ ′ ′ ′′ ′′= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫K Y Y Y Y Y Y  

( )
1i

i

y T

y

cGJ dy
+

α α

⎛ ⎞
′ ′+ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ Y Y                               (3.29a) 

 

( ) ( ) ( )
( ) ( ) ( )

1

, 2 2

/2 cos
1/ sin 2 / 2

i

x

i

y
Te n cor

b n n EI n w w
y n cor n n

l y y y dy
l L L

ωξ θ σ ω
ω ω ω

+

′′ ′′=
+ +⎡ ⎤⎣ ⎦

∫K Y Y           

(3.29b) 

 

( ) ( ) ( )
( ) ( ) ( )

1

, 2 2

/2 cos
1/ sin 2 / 2

i

i

y
Te n cor

t n n GJ n
y n cor n n

l y y y dy
l L L α α

ωξ θ σ ω
ω ω ω

+

′ ′=
+ +⎡ ⎤⎣ ⎦

∫K Y Y          

(3.29c) 

 
Assembling the elemental matrices gives 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 , ,
1 1

, , , , , ,
N N

b n n t n n s
n n

t t t t t
= =

⎛ ⎞ ⎛ ⎞θ θ + ξ θ θ + ξ θ θ θ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑MU + K U K U K U = F U  

(3.30) 

 
where M  is a ( )6 6S Sn n×  mass matrix representing the assembled elemental 

mass matrix eM , Sn  is the number of points in the structural grid, 0K  is a 

( )6 6S Sn n×  matrix representing the assembled elemental mean value of the 

stiffness matrix 0
eK . ,b nK  and ,t nK  are ( )6 6S Sn n×  matrices representing the 
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assembled elemental bending ,
e
b nK  and torsion ,

e
t nK  random stiffness matrices, 

respectively. ( ), ,s t θF U  is a ( )6 1Sn ×  vector representing the assembled 

elemental force vector e
sF , and ( ),t θU  is a ( )6 1Sn ×  vector of the displacements 

of the points in the structural grid and represents the assembled elemental 

displacement vector eU . In the numerical analysis the wing structure will be 

discretized into 9 elements so the number of points in the structural grid will be 

9 1 10sn = + =  nodes. The number of equations in the expression (3.30) will be 

6 60Sn = . 

Note that the left-hand side of equation (3.30) constitutes a set of 

stochastic second-order differential equations with random variable coefficients 

with Gaussian distribution. In the absence of aerodynamic forces, these 

equations are always stable, since the stiffness matrices are real positive 

definite. This is guaranteed by the fact that the uncertain components of the 

stiffness parameters are very small compared with their mean values as stated in 

the beginning of this section. In the next section the aerodynamic nodes will be 

connected to the structural finite element mesh and the aerodynamic forces will 

be transferred to the structural grid. 

In the next section the aerodynamic nodes will be connected to the 

structural finite element mesh and the aerodynamic forces will be transferred to 

the structural grid.  

 

 



www.manaraa.com

150 

 

3.5. System Modeling 

Figure 3.7(a) shows the structural grid superimposed to the aerodynamic 

grid. The relationship between the displacements of the aerodynamic grid points 

and displacements of the structural grid points is given by the following 

relationship: 

 
1

2

∆⎧ ⎫
⎪ ⎪∆⎪ ⎪∆ℜ = =⎨ ⎬
⎪ ⎪
⎪ ⎪∆⎩ ⎭

r
r

G U

r
A

A AS

n

                                (3.31) 

 
where A∆ℜ  is a ( )3 1An ×  vector representing the displacements of the control 

points in the aerodynamic grid, An  is the number of control points in the 

aerodynamic grid, ASG  is an 3 6×A Sn n  interpolation matrix that connects the 

displacements of the nodal points in the aerodynamic grid to the displacements 

of the nodal points in the structural grid [25].  

Figure 3.7(b) exemplifies how an aerodynamic point is connected to an 

internal structural grid point, where an aerodynamic point AP  is connected to a 

point SP  on the elastic axis between two successive structural nodes. For the 

example showed in the Figure 3.7(b), the structural nodes are labeled by the 

index i , where s1, 2,...,8( )= =i n  while the aerodynamic points are labeled by the 

index j , where A1,2,...,18( )= =j n . The points SP  and AP  are in the same plane, 

which is perpendicular to the elastic axis. The relative position between AP  and 

SP  is given by the vector ( ), ,=r AS
j j j jx y z . The displacement of the point AP  is 
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given by { }1 2 3, ,∆ = ∆ ∆ ∆r
TA A A A

j r r r  and the displacement of the point SP  is given by 

{ }, v , , , ,=U
Ts s s s s s

i i i i i i iu w β α γ . The relationship between the points AP  and SP  is 

given by [25]: 

 

∆ =r G U
A Sj ji i ,  

1 0 0 0 0
0 1 0 0
0 0 1 0 0

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

G
j

ji j j

j

z
z x

x
                  (3.32) 

 
The displacement vector 

SPU  is obtained by finite element interpolation as a 

function of displacements on nodes i  and 1i +  as follows: 

 
11 12 13 14

, 1 , 1
21 22 23 24

SP i i i i+ +

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Y Y Y Y
U U YU

Y Y Y Y
               (3.33) 

 

where { }, 1 1 1 1 1 1 1v v T
i i i i i i i i i i i i i iu w u w+ + + + + + += β α γ β α γU , and the 

detailed structures of Yij  are given in the Appendix E. Introducing equation (3.33) 

into equation (3.32) gives: 

 

, , 1
1 1

+
+ +

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤∆ = =⎨ ⎬ ⎨ ⎬⎣ ⎦⎣ ⎦ ⎩ ⎭ ⎩ ⎭

U U
r G Y G G

U UA

i i
j ji j i j i

i i

          (3.34) 

 
Next, the matrix ,G j i  will be assembled into the global matrix, ASG , which 

is introduced into equation (3.31). In order to obtain the relationship between the 

aerodynamic forces AF  and structural forces SF , the two force systems must 

have the same work for any virtual displacement, i.e., 
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( ) ( ){ }δ ∆ℜ = δ = δF U G F U F
TT T T

A A St AS A St S     (3.35) 

 
where  ( )δ ∆ℜA  and T

StδU  are virtual displacements of control points of the 

aerodynamic grid and of structural nodes, respectively. G AS  is the global matrix 

which connects the control points of the aerodynamic grid to the structural grid 

points, AF  is the matrix of aerodynamic force, which is located at the 

aerodynamic control point, and SF  is the matrix of the structural load, which is 

located at the structural grid points. For the present study the detailed forms of 

the matrices G AS , AF , and SF  are given in the Appendix E. Equation (3.35) yields 

the relationship between structural forces and the aerodynamic forces, 

 

( )= =F G F G F
T

S AS A SA A                                      (3.36) 
 

where ( ) =G G
T

AS SA . Introducing equation (3.36) into the equation (3.30), the 

equations of motion of the system is: 

 

( ) ( ) ( ) ( ) ( )0 , ,
1 1= =

⎡ ⎤⎛ ⎞ ⎛ ⎞θ + ξ θ + ξ θ θ θ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑MU + K K K U = G F

N N

b n n t n n SA A
n n

       (3.37) 

 
Equation (3.37) constitutes the equations of motion of a wing involving stiffness 

uncertainties. A modal analysis of equation (3.37) is performed and gives:  

 
0 =K Ψ MΨΛ                         (3.38) 

 
where Ψ  is an ×  eigenvector matrix where   is the number of degrees of 

freedom of the finite element model, and Λ  is a ×  diagonal matrix of 
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eigenvalues. Equation (3.37) will be solved using perturbation analysis in the next 

section. 

 

3.6. Perturbation Analysis 

The stochastic finite element method based on perturbation techniques 

has been developed in the literature by several researchers [103-105, 113]. The 

following coordinate transformation will be used to approximate the deformation 

of the beam: 

 

( )
1

,
=

≅ Ψ =∑U Ψq
N

k k
k

t qθ ;                    (3.39a) 

 
where Ψ  is a truncated form of Ψ . For the present application, the method 

requires displacement vector be expanded into the truncated Taylor series: 

 

( ) ( ) ( ) ( ) ( )
2

0 0 0
1 1 1

1, | | ...
2= =

= = =

⎡ ⎤∂ ∂
= + + +⎢ ⎥∂ ∂ ∂⎣ ⎦

∑ ∑ ∑ξ ξ
q qU Ψ q

N N N

n n m
n n mn n m

t tθ ξ θ ξ θ ξ θ
ξ ξ ξ

 

       (3.39b) 

 
Note that Ψ  is an ×N  matrix that includes first N  mode shape vector, q  is 

an 1×N  generalized coordinates vector, and 0q  is the mean value of q . 

Substituting equation (3.39b) into equation (3.37), pre-multiplying both sides by 

−1 TM Ψ and collecting terms of the same power of ξ  yields a set of perturbational 

equations of zero-order, first-order, second-order, and so on. For simplification 

sake we restrict the analysis up to the first-order and the following perturbational 

equations are obtained: 
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• Zero-order equation (coefficients of 0

nξ ): 

 
0 0 0 ,0

−⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦
1 Tq Ψ K Ψ q M Ψ G FT

SA A               (3.40a) 

 
• First-order equation (coefficients of 1

nξ ): 
 

1, 0 1, , , 0
− ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ∂

T T 1 T Fq Ψ K Ψ q Ψ K Ψ Ψ K Ψ q M Ψ GT A
n n b n t n SA

nξ
 

               (3.40b) 

 
where 1...n N= , 1,

∂=
∂

qq n
nξ

, and 0⎡ ⎤⎣ ⎦Ψ K ΨT  is am ×N N  diagonal matrix of first N  

eigenvectors. Alternatively, using the non-dimensional variables from the 

aerodynamic modeling, the perturbation equations in non-dimensional form are 

obtained:  

2
0 0 0⎡ ⎤+ =⎣ ⎦q Ψ K Ψ q G FT

Cc MA AT                   (3.41a) 
 

2
1, 0 1, , , 0

ˆ ˆ ∂⎡ ⎤⎡ ⎤+ = − + +⎣ ⎦ ⎣ ⎦ ∂
Fq Ψ K Ψ q K K q GT A

n Cc n b n t n MA
n

T
ξ

                 (3.41b) 

 

where 41
2

−⎛ ⎞= ρ⎜ ⎟
⎝ ⎠

1 TG M Ψ GMA C C SAL , 2
,

ˆ n
b C b nT= TK Ψ K Ψ , 2

,
ˆ n

t C t nT= TK Ψ K Ψ . 

Equations (3.41) are numerically integrated once using an adapted 

Hamming's fourth order predictor-corrector method [36]. The numerical solutions 

are performed using the following values of the wing [38]: 6 210xEI Nm= ; 

6 250 10zEI Nm= × ; 6 21.5 10GJ Nm= × ; 620 10EA N= × ; m =  10 /kg m ; 0 15I kg m= ; 

3 0.15 mδ = ; wing length 3L m= ; wing chord 1C m= ; angle of attack 5aα = ° ; 

0.16667CL m= .  
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In order to obtain realistic results the wing will be discretized using 9 

elements for the wing structure and 6 10×  elements for the lattice. The response 

will be obtained from perturbation method at various flow speeds and various 

bending and torsion stiffness uncertainty levels, i.e., 

 

( ) ( ) ( ) ( )
0, 1,

1

,
N

ben ben ben n
n

q q qτ θ τ τ ξ θ
=

= +∑ ,     ( ) ( ) ( ) ( )
0, 1,

1

,
N

tor tor tor n
n

q q qτ θ τ τ ξ θ
=

= +∑      

(3.42a,b) 

 

where 2N = , 0,benq  and 0,torq  are obtained from the equation (3.41a), 1,benq  and 

1,torq  from the equation (3.41b). The analysis is carried out for 2N =  since for 

2N >  the results converge as shown in Figure 3.8. The temporal component of 

the variance of the response along the ensemble is given by: 

 

( ) ( ) ( )( )22 , , ,ben ben bens t q t E q t= − ⎡ ⎤⎣ ⎦θ θ θ ,     ( ) ( ) ( )( )22 , , ,tor tor tors t q t E q t= − ⎡ ⎤⎣ ⎦θ θ θ      

(3.43a,b) 

 
Four cases are studied and the results are shown below: (1) in the 

absence of uncertainties; (2) the influence of bending stiffness uncertainty; (3) 

the influence of torsion stiffness uncertainty; (4) the influence of combination 

bending-torsion stiffness uncertainty. 
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3.6.1 RESULTS IN THE ABSENCE OF UNCERTAINTIES 

 The purpose of the system analysis in the absence of uncertainties is to 

find the wing critical flutter speed. Figures 3.9, 3.10, 3.11, and 3.12 show the time 

history records and their corresponding variances for the airflow speeds 120 m/s, 

140 m/s, 143 m/s, and 145 m/s respectively. These plots and the subsequent 

plots are obtained at angle of attack 5oα =  and initial conditions (0) 0.05benq = − , 

(0) 0.0benq = , (0) 0.01torq = , and (0) 0.0torq = . 

 It is observed that the system is stable up to the flow speed 143 m/s when 

limit cycle oscillations (LCOs) appear. A slightly increase in the flow speed, let 

say 145 m/s, the system become unstable with growing amplitude. Next sections 

will show the influence of uncertainties on the stability of the system. 

 

 3.6.2 THE INFLUENCE OF BENDING STIFFNESS UNCERTAINTY 

Under bending stiffness uncertainty, the results are obtained for airflow 

speeds of 120 m/s, 125 m/s, 130 m/s, 135 m/s, and 140 m/s.  

• Figures 3.13 and 3.14 show the results for the airflow speed 120m/s. In the 

presence of small level of bending stiffness uncertainty up to / 0.09
xEI xEIσ = , 

the wing remains stable and both time history records and their variances 

decay with time (see Figure 3.13). When the bending stiffness uncertainty 

reaches the critical value / 0.1
xEI xEIσ =  the wing experiences limit cycle 

oscillations as shown in Figure 3.14. Above that level of bending stiffness 

uncertainty the wing oscillations grow without limit.  
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• For the airflow speed 125 m/s the time histories and their corresponding 

variances are shown in the Figures 3.15 – 3.17 for bending stiffness 

uncertainty levels of / 0.07
xEI xEI =σ , / 0.08

xEI xEI =σ , and / 0.09
xEI xEI =σ , 

respectively. As we observe from the figures, LCOs are obtained at 

/ 0.08
xEI xEI =σ . Below this value the system is stable and above it is 

unstable.  

• For the airflow speed 130 m/s the time histories and their corresponding 

variances are shown in the Figures 3.18 – 3.20 for bending stiffness 

uncertainty levels of / 0.05
xEI xEI =σ , / 0.06

xEI xEI =σ , and / 0.07
xEI xEI =σ , 

respectively. The LCOs are obtained at / 0.06
xEI xEI =σ . Below this value the 

system is stable and above it is unstable.  

• For the airflow speed 135 m/s the time histories and their corresponding 

variances are shown in the Figures 3.21 – 3.23 for bending stiffness 

uncertainty levels of / 0.03
xEI xEI =σ , / 0.04

xEI xEI =σ , and / 0.05
xEI xEI =σ , 

respectively. The LCOs are obtained at / 0.04
xEI xEI =σ . Below this value the 

system is stable and above it is unstable.  

• For the airflow speed 140 m/s the time histories and their corresponding 

variances are shown in Figures 3.24 – 3.26 for bending stiffness uncertainty 

levels of / 0.01
xEI xEI =σ , / 0.015

xEI xEI =σ , and / 0.02
xEI xEI =σ , respectively. 

The LCOs are obtained at / 0.015
xEI xEI =σ . Below this value the system is 

stable and above it is unstable. 
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All the above results are summarized in Figure 3.27 which shows the 

stability bifurcation diagram  V∞ - /
xEI xEIσ , where the region occupied by small 

empty circles, “○”, designates stable wing response, and the region covered by 

small empty triangles, “∆”, is belonging to unstable wing. The line separating the 

two regions signals the occurrence of LCO and it is designated by empty squares 

“�”. From the stability diagram we may conclude that the unstable region 

increases with the flow speed. 

 

 3.6.3 THE INFLUENCE OF TORSION STIFFNESS UNCERTAINTY 

This section examines the influence of torsion stiffness uncertainty on the 

stability of the wing in the absence of bending stiffness uncertainty. The analysis 

is done in the range of airflow speed 120-140m/s as follows. For the airflow 

speed 120 m/s the time histories and their corresponding variances are shown in 

the Figures 3.28 – 3.30 in absence of bending stiffness uncertainty and in the 

presence of torsion stiffness uncertainty levels of / 0.03GJ GJσ = , / 0.035GJ GJσ = , 

and / 0.04GJ GJσ = , respectively. The LCOs are obtained at / 0.035GJ GJσ = . 

Below this value the system is stable and above it is unstable.  

Figures 3.31 – 3.33 show the appearance of LCOs at airflow speeds 

130m/sV∞ = , 135m/sV∞ = , and 140m/sV∞ =  and torsion uncertainty levels of 

/ 0.03GJ GJσ = , / 0.02GJ GJσ = , / 0.01GJ GJσ = , respectively. Below the uncertainty 

level where the LCOs appear, the system is stable while above it is unstable. 



www.manaraa.com

159 

 

Figure 3.34 shows the stability bifurcation diagram V∞ - /GJ GJσ . It is seen 

that the stable region in the presence of torsion stiffness uncertainty is smaller 

than the stable region in the presence of bending stiffness uncertainty. This 

demonstrates the significant influence of torsion stiffness uncertainty on the 

stability of the wing. 

 

3.6.4 THE INFLUENCE OF COMBINATION BENDING – TORSION STIFFNESS 

UNCERTAINTY 

The influence of combined bending-torsion stiffness uncertainty is shown 

in the Figures 3.35 – 3.46. The Figures show only the appearance of LCO which 

corresponds to the boundary between stable and unstable region.  

• Figures 3.35 – 3.39 show the time history records and their corresponding 

variances for the flow speed 120m/sV∞ =  and the following uncertainty levels: 

( / 0.01
xEI xEI =σ , / 0.0325GJ GJσ = ), ( / 0.03

xEI xEI =σ , / 0.025GJ GJσ = ), 

( / 0.05
xEI xEI =σ , / 0.02GJ GJσ = ), ( / 0.07

xEI xEI =σ , / 0.015GJ GJσ = ), and 

( / 0.09
xEI xEI =σ , / 0.01GJ GJσ = ), respectively.  

• Figures 3.40 – 3.44 show the time history records and their corresponding 

variances for the flow speed 130m/sV∞ =  and the following uncertainty levels: 

( / 0.01
xEI xEI =σ , / 0.025GJ GJσ = ), ( / 0.02

xEI xEI =σ , / 0.021GJ GJσ = ), 

( / 0.03
xEI xEI =σ , / 0.015GJ GJσ = ), ( / 0.04

xEI xEI =σ , / 0.01GJ GJσ = ), and 

( / 0.05
xEI xEI =σ , / 0.075GJ GJσ = ), respectively.  
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• Figure 3.45 shows the time history records and their corresponding variances 

for the flow speed 140m/sV∞ =  and the uncertainty levels ( / 0.01
xEI xEI =σ , 

/ 0.005GJ GJσ = ). 

The above results are summarized in the Figure 3.46 which shows the 

influence of both bending and torsion uncertainties on the stability of the wing. 

Figure 3.46(a) reveals the stability boundaries for the bending-torsion 

combination uncertainties ( /
xEI xEIσ - /GJ GJσ ) at different flow speeds and Figure 

3.46(b) is a 3-dimensional representation of Figure 3.46(a) with airflow speed 

represented by the third axis. 

 

3.7. Monte Carlo Simulation 

In order to define the limitation of the perturbation method, the Monte 

Carlo simulation will be performed. First consider the deterministic equations of 

motion for one element as given by equation (3.20). Uncertainties will be 

introduced in bending stiffness, which is described by equation (3.22a). 

Introducing equation (322a) into equation (3.21b) the expression for the 

elemental stiffness takes the form: 

( ) ( )
1 1

v v( ) ( ) ( ) ( )
i i

i i

y yT T
e

z u u
y y

EI y y dy AE y y dy
+ +⎛ ⎞ ⎛ ⎞

′′ ′′ ′ ′= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫K Y Y Y Y  

 

( )( ) ( )( )
1 1

( ) ( ) ( ) ( )
+ +⎛ ⎞ ⎛ ⎞

′′ ′′ ′ ′+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫Y Y Y Y
i i

i i

y yT T

xx w w
y y

EI EI y y dy c GJ GJ y y dyα α            

(3.44) 
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Assembling the elemental matrices given in the equation (3.20), having 

the elemental stiffness given by equation (3.44), and introducing the 

aerodynamic loads given by expression (3.36) gives the system equation: 

 
CP
SA AMU + KU = G F                                           (3.45) 

 
Using the coordinate transformation given by equation (3.39a), equation 

(3.45) takes the form 

 
CP
SA A

−+ = 1 Tq Λq M Ψ G F                                     (3.46) 

 
The number of equations in the expression (3.46) is 7. Equation (3.46) will be 

integrated numerically once based on the assumption that the response is 

ergodic.  

Time history records together with their corresponding variances obtained 

from Monte Carlo method as well as a comparison with perturbation method 

results are shown in Figures 3.47 – 3.51 in the presence of bending uncertainty.  

• Figure 3.47 reveals the results obtained for airflow speed 120m/sV∞ =  and 

bending uncertainty level / 0.1
xEI xEIσ = ;  

• Figure 3.48 reveals the results obtained for airflow speed 125m/sV∞ =  and 

bending uncertainty level / 0.08
xEI xEI =σ ;  

• Figure 3.49 reveals the results obtained for airflow speed 130m/sV∞ =  and 

bending uncertainty level / 0.06
xEI xEI =σ ;  
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• Figure 3.50 reveals the results obtained for airflow speed 135m/sV∞ =  and 

bending uncertainty level / 0.04
xEI xEI =σ ;  

• Figure 3.51 reveals the results obtained for airflow speed 140m/sV∞ =  and 

bending uncertainty level / 0.01
xEI xEI =σ .  

From the comparisons between the two methods shown in the Figures 

3.47(c), 3.48(c), 3.49(c), 3.50(c), 3.51(c), we may conclude by increasing the 

airflow speed and decreasing the uncertainty level, the accuracy of the 

perturbation method increases. The Monte Carlo simulation confirms the 

perturbation results in predicting the LCO for low values of bending stiffness 

variance.  

The bifurcation diagram shown in Figure 3.52 obtained from Monte Carlo 

simulation is identical with the one shown in Figure 3.27 estimated by 

perturbation method. This demonstrates that the perturbation method is very 

accurate in predicting LCOs and the establishment of stability boundaries in the 

presence of bending uncertainties. The dependence of bending and torsion 

variances on bending uncertainties is shown in Figure 3.53 for different values of 

airflow speed. 

Figures 3.54 – 3.56 show the Monte Carlo simulation time history 

responses for three values of airflow speed, 120m/s, 130m/s and 140m/s, and 

three different levels of torsion stiffness uncertainty, / 0.05GJ GJσ = , 0.03  and 

0.01 , respectively. The comparison shown in Figure 3.54(c) reveals a poor 

approximation of the perturbation method as compared with the Monte Carlo 
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simulation for flow speed 120 m/s and / 0
xEI xEI =σ , / 0.05GJ GJσ = . Note that the 

Monte Carlo simulation yields LCO while the perturbation method gives unstable 

response. Better correlation between the two methods is obtained at higher 

speeds but lower uncertainty levels as demonstrated in Figure 3.56(c) for flow 

speed 140 m/s, / 0
xEI xEI =σ , / 0.01GJ GJσ = . The stability bifurcation diagram 

V∞ - /GJ GJσ  obtained from Monte Carlo simulation is shown in Figure 3.57. 

Comparing the bifurcation diagrams from Figures 3.34 and 3.57, one observes a 

good correlation in the prediction of LCOs up to flow speed 130 m/s and 

/ 0.03GJ GJσ = . As the airflow speed decreases and torsion stiffness uncertainty 

level increases, the perturbation method loses the ability to predict LCOs. For 

example at flow speed 120 m/s, LCO is obtained form Monte Carlo simulation at 

/ 0.05GJ GJσ = , while from perturbation method at / 0.035GJ GJσ = . Figure 3.58(a) 

and 3.58(b) shows the dependence of bending and torsion variances on the 

torsion stiffness uncertainty level for different values of airflow speed indicated on 

each curve. Both diagrams confirm the limitation of perturbation method for low 

level of stiffness uncertainty. 

 

3.8. Closing Remarks 

The influence of uncertainties on the flutter behavior of an aeroelastic wing 

is examined. The uncertainties are modeled using a modified first order 

stochastic perturbation method together with a truncated Karhunen-Loeve 

expansion instead of Taylor series. However, the Taylor series is used for 
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displacement vector expansion. The results of the perturbation approach are 

compared with those predicted by Monte Carlo simulation and the comparison 

revealed good correlation for low values of stiffness uncertainty levels. As the 

uncertainty level increases, the perturbation method loses accuracy. For the 

prediction of LCO, the perturbation method is very accurate for all levels of 

bending stiffness uncertainty examined, but the method loses its accuracy at 

upper levels of torsion stiffness uncertainty. The stability boundary in the flow 

speed versus stiffness uncertainty reveals the appearance of LCOs below the 

flutter speed. Further increase of uncertainty level produces instability. The 

uncertainties in torsion stiffness induce a greater disturbance in the system. A 

smaller level of torsion stiffness uncertainty induces instability in the system.  

One last remark pertaining to the CPU time in generating the results of the 

two approaches. The CPU, on a PC of 3.2 GHz, for a single Monte Carlo 

simulation (based on assuming ergodicty of the response) requires 8 hours which 

is the CPU time required for perturbation analysis. Even though for Monte Carlo 

simulation, 7 equations are necessary to be solved and for the perturbation 

method 21 equations, the computational time is approximately the same. In the 

case of Monte Carlo simulation the equations must be solved for each value of 

airflow speed and each value of uncertainty level. In the case of perturbation 

method, the 0
nξ  order equations (3.41a) are necessary to be solved only once for 

each value of air-flow speed regardless of level of uncertainty. For the same 

airflow speed and different levels of uncertainty, only equations (3.41b) need to 

be solved. The equations (3.41b), if they are solved simultaneously, will take less 
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computational time than a single Monte Carlo simulation. The next chapter will 

provide the final conclusions and recommendations pertaining to the entire work 

presented here as well as the proposal for the future work.  
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Figure 3.1. Lifting Surface Discretization  
 

 
Figure 3.2. The position of an arbitrary point P  on the lifting surface caused by 

the wing structure deformation 
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Figure 3.3(a). Bound and free vortex lattices 

 
 
 
 
 

 
 

Figure 3.3(b). Representation of a general bound lattice element 
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Figure 3.4 A portion of the lattice with representation of the aerodynamic loads 
 
 

 

 

 

 

 

 

 

 

Figure 3.5. Wing structure model 
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Figure 3.6(a). Finite elements discretization 

 

 

 

 

Figure 3.6(b). A finite element representation 
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Structure nodes: i 1, 2,...,8= ,  Aerodynamic control points: j 1, 2,...,18=  
 

Figure 3.7(a). Structural grid superimposed to the aerodynamic grid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7(b). Connection of an aerodynamic grid point to an internal point of the 
structural grid point 
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Figure 3.8. Dependence of wing response variances on the number of terms N in 
the Karhunen-Loeve expansion showing the convergence is achieved for ≥N 2 . 
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.9. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0

xEI xEIσ = ,  / 0GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , 

( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.10. Time history records of bending and torsion responses and their 
variances for 140 /V m s∞ = , / 0

xEI xEIσ = ,  / 0GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , 

( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  

τ

2
bens
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2
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.11. Time history records of bending and torsion responses and their 
variances for flutter speed 143 /V m s∞ = , / 0

xEI xEIσ = ,  / 0GJ GJσ = , 5aα = ° , 

( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  

τ

2
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.12. Time history records of bending and torsion responses and their 
variances for 145 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.13. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.09
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.14. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.1
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.15. Time history records of bending and torsion responses and their 
variances for 125 /V m s∞ = , / 0.07
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.16. Time history records of bending and torsion responses and their 
variances for 125 /V m s∞ = , / 0.08
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.17. Time history records of bending and torsion responses and their 
variances for 125 /V m s∞ = , / 0.09
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.18. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.05
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.19. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.06
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.20. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.07
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.21. Time history records of bending and torsion responses and their 
variances for 135 /V m s∞ = , / 0.03
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.22. Time history records of bending and torsion responses and their 
variances for 135 /V m s∞ = , / 0.04
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.23. Time history records of bending and torsion responses and their 
variances for 135 /V m s∞ = , / 0.05
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.24. Time history records of bending and torsion responses and their 
variances for 140 /V m s∞ = , / 0.01
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.25. Time history records of bending and torsion responses and their 
variances for 140 /V m s∞ = , / 0.015
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.26. Time history records of bending and torsion responses and their 
variances for 140 /V m s∞ = , / 0.02
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Figure 3.27. Stability bifurcation diagram V∞  vs. /
xEI xEIσ  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.28. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.29. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.30. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.31. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.32. Time history records of bending and torsion responses and their 
variances for 135 /V m s∞ = , / 0
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.33. Time history records of bending and torsion responses and their 
variances for 140 /V m s∞ = , / 0

xEI xEIσ = , / 0.01GJ GJσ = , 5aα = ° , ( )0, 0 0.05benq = − , 

( )0, 0 0benq = , ( )0, 0 0.01torq = , ( )0, 0 0torq =  
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Figure 3.34. Stability bifurcation diagram V∞  vs. /GJ GJσ   
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.35. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.01
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.36. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.03
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.37. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.05
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.38. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.07
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.39. Time history records of bending and torsion responses and their 
variances for 120 /V m s∞ = , / 0.09
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.40. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.01
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.41. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.02
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.42. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.03

xEI xEIσ = , / 0.015GJ GJσ = , 5aα = ° , 

( )0, 0 0.05benq = − , ( )0, 0 0benq = , ( )0, 0 0.01torq = , ( )0, 0 0torq =  

τ

benq

τ

torq

τ

2
bens

τ

2
tors



www.manaraa.com

206 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
 

Figure 3.43. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.04
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots 
 

Figure 3.44. Time history records of bending and torsion responses and their 
variances for 130 /V m s∞ = , / 0.05

xEI xEIσ = , / 0.0075GJ GJσ = , 5aα = ° , 

( )0, 0 0.05benq = − , ( )0, 0 0benq = , ( )0, 0 0.01torq = , ( )0, 0 0torq =  

τ

benq

τ

torq

τ

2
bens

τ

2
tors



www.manaraa.com

208 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
Figure 3.45. Time history records of bending and torsion responses and their 

variances for 140 /V m s∞ = , / 0.01
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 3.46. Stability boundaries /

x
xEI EIσ  vs. /GJ GJσ  at different flow speeds 

(a) 2D representation and (b) 3D representation 
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.47. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 120 /V m s∞ = , / 0.1
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.48. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 125 /V m s∞ = , / 0.08
xEI xEIσ = , 

/ 0GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.49. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 130 /V m s∞ = , / 0.06
xEI xEIσ = , 

/ 0GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.50. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 135 /V m s∞ = , / 0.04
xEI xEIσ = , 

/ 0GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.51. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 140 /V m s∞ = , / 0.015
xEI xEIσ = , 5aα = ° , 

( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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Figure 3.52. Stability bifurcation diagram V∞  vs. /
xEI xEIσ for Monte Carlo 

Simulation 
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Figure 3.53. Perturbation method convergence 
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.54. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 120 /V m s∞ = , / 0
xEI xEIσ = , 

/ 0.05GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 
________ Perturbation method; --------  Monte Carlo Simulation 

 
Figure 3.55. Time history records of bending and torsion responses and their 

variances from Monte Carlo Simulation; 130 /V m s∞ = , / 0
xEI xEIσ = , 

/ 0.03GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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(a) Time history response of bending and torsion at the wing tip 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Bending and torsion variances time history plots  
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(c) Bending and torsion variances time history comparison plots 

________ Perturbation method; --------  Monte Carlo Simulation 
 

Figure 3.56. Time history records of bending and torsion responses and their 
variances from Monte Carlo Simulation; 140 /V m s∞ = , / 0

xEI xEIσ = , 

/ 0.01GJ GJσ = , 5aα = ° , ( )0 0.05benq = − , ( )0 0benq = , ( )0 0.01torq = , ( )0 0torq =  
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Figure 3.57. Stability bifurcation diagram V∞  vs. /GJ GJσ  for Monte Carlo 
Simulation 
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(b) 

Figure 3.58. Perturbation method convergence 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

Two related problems were analyzed in this dissertation. The first problem 

is related to the suppression of flutter via parametric excitation. In order to 

accomplish that, a two-dimensional nonlinear cantilever wing model was 

proposed. The wing is excited at the clamped end in the plane of largest rigidity 

such that the bending and torsion modes are cross-coupled through the 

excitation. The Theodorsen’s theory was adopted for the modeling of 

aerodynamic lift and moment. The nonlinearities arise from small in-plane 

displacement and nonlinear curvature. The equations of motion are then derived 

using Hamilton’s principle.   

For the linearized system, an eigenvalue problem was solved to find the 

critical flutter speed. Two cases were analyzed: one considering complex 

circulation function, the other one considering real circulation function. It was 

found that the error between the two flutter speeds obtained in both cases is very 

small, so in the subsequent analyzes the circulation function was adopted real. 

Also, in the presence of parametric excitation, the regions of parametric instability 

were obtained for different values of flow speed. At the critical flutter speed the 

bottom of instability region touches the frequency axis. Below and above the 

critical speed the instability regions move away from the frequency axis.  

The method of multiple scales was used to analyze the nonlinear system. The 

system was studied in the neighborhood of combination parametric resonance at 

the critical flutter speed and at flow speed that is slightly higher than the critical 
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one. At critical flutter speed the response was found to possess more than one 

attractor which is obtained from a certain domain of initial conditions. As the 

excitation amplitude increases, the response experiences a cascade of period 

doubling and eventually chaotic motion. At critical excitation amplitude the 

response exhibits stabilization state to the zero equilibrium attractor over a wide 

range of initial conditions. The stabilization effect was also manifested at a flow 

speed that is slightly higher than the critical flutter speed. However, the 

stabilization effect was preceded by new phenomena such as firing and recovery 

states. The original nonlinear equations of motion were numerically integrated in 

order to validate the multiple scales results. The numerical simulations confirmed 

the multiple scales findings.  

Another problem that has been analyzed in this thesis is the influence of 

uncertainties on the flutter behavior of a nonlinear aeroelastic wing. In order to 

accomplish that, an aerodynamic model based on unsteady vortex lattice method 

was adopted and a finite element model which includes uncertainty in bending 

and stiffness was developed. Also, an interpolation matrix was used to combine 

the models and treat the airflow and the wing structure as a single system. The 

system is then solved by an adapted Hamming’s fourth order predictor-corrector 

method. The uncertainties are modeled using a modified first order stochastic 

perturbation method which uses truncated Karhunen-Loeve expansion to 

discretize the random field. Four cases were analyzed: (1) the system in the 

absence of uncertainties; (2) the influence of bending stiffness uncertainty; (3) 

the influence of torsion stiffness uncertainty; (4) the influence of combination 
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bending-torsion stiffness uncertainty. The results of the perturbation approach 

are then compared with those predicted by Monte Carlo simulation. The following 

conclusions have been taken: 

• There is a good correlation between the perturbation method and Monte 

Carlo simulation for low values of stiffness uncertainty levels.  

• As the uncertainty level increases, the perturbation method loses accuracy. 

• For the prediction of LCO, the perturbation method is very accurate for all 

levels of bending stiffness uncertainty examined, but the method loses its 

accuracy at upper levels of torsion stiffness uncertainty.  

• The stability boundary in the flow speed versus stiffness uncertainty reveals 

the appearance of LCOs below the flutter speed. Further increase of 

uncertainty level produces instability.  

• The uncertainties in torsion stiffness induce a significant disturbance in the 

system. A smaller level of torsion stiffness uncertainty induces instability in 

the system.  

• The results presented in Chapter 3 are pertaining to material properties listed 

in page 154. The algorithm can be used for any other material properties. 

One last remark pertaining to the CPU time in generating the results of the 

perturbation method and Monte Carlo simulation. The CPU, on a PC of 3.2 GHz, 

for a single Monte Carlo simulation (based on assuming ergodicty of the 

response) requires 8 hours which is the CPU time required for perturbation 

analysis. Even though for Monte Carlo simulation, 7 equations are necessary to 

be solved and for the perturbation method 21 equations, the computational time 
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is approximately the same. In the case of Monte Carlo simulation the equations 

must be solved for each value of airflow speed and each value of uncertainty 

level. In the case of perturbation method, the 0
nξ  order equations (3.41a) are 

necessary to be solved only once for each value of air-flow speed regardless of 

level of uncertainty. For the same airflow speed and different levels of 

uncertainty, only equations (3.41b) need to be solved. The equations (3.41b), if 

they are solved simultaneously, will take less computational time than a single 

Monte Carlo simulation. 

A very important problem that has not been analyzed in the present work 

is the influence of the boundary condition relaxation together with the wing 

structure uncertainties. The problem is important because, in reality, the joints in 

the clamped end can relax with time and can change the boundary conditions 

which at the extreme will become simply-supported. Because this problem 

involves the evolution of system frequencies in time, it can be analyzed using 

time-frequency techniques such as short time Fourier transform (STFT) or 

wavelet transform (WT). Since in reality the wing structure is not linear, a 

nonlinear finite element model of the wing will be proposed. This will complicate 

the problem because the nonlinear finite element involves different computational 

schemes that have to be correlated with Hamming’s method. Also the modeling 

of the aerodynamic loads using the unsteady vortex lattice method can include 

gust, ground effect, stores inclusion, or aileron. Because the vortex lattice 

method is valid only for incompressible flow and viscosity is present only in the 
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boundary and wakes, the effect of compressibility and turbulence must be 

analyzed by different computational fluid dynamics techniques.  
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APPENDIX A 
 

 

Elements of equation (2.22) 

( )2 2( , ) 2R I uAA k A iA ir rα ω = ω + + ζ ω+ ,  ( )2( , ) R IBB k B iBα ω = ω + , 

( )2( , ) R IDD k D iDα ω = ω + , ( )2 2( , ) 2R IEE k E iE ir rα α α αω = ω + + ζ ω+   

where 

( )21R
G kA
kα

⎛ ⎞µ
= − +µ +⎜ ⎟ω⎝ ⎠

, 
( )2

I
F kA
kα

µ
=

ω
, 

( )

( )
( )

( )
6 2

2 1 2R
F k G kB c x a a

kk
α

αα

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − + + − − µ

⎜ ⎟ω⎢ ⎥ω⎝ ⎠⎣ ⎦
, 

( )

( ) ( ) ( )6 21 1 2I
c G kB a F k
k kα α

⎡ ⎤µ
= + − −⎢ ⎥

ω ω⎢ ⎥⎣ ⎦
, 

( )
( )

7 1 2R
G kD c x a a
kα
α

⎡ ⎤⎛ ⎞
= − + + + µ⎢ ⎥⎜ ⎟ω⎢ ⎥⎝ ⎠⎣ ⎦

, ( )
( )

7 1 2I
F kD c a
kα

µ
= − +

ω
, 

( )
( )

( )

( )
2 2 2

2
1 1 2 1 2
8 2R

G k F kE r a a a
k k

α
α α

⎡ ⎤⎛ ⎞ ⎛ ⎞= − +µ − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ω⎝ ⎠ ⎝ ⎠ ω⎢ ⎥⎣ ⎦
, 

( ) ( )
( )21 1 2 1 2

2 2I
G kE a a F k a

k kα α

⎡ ⎤µ ⎛ ⎞= − − − − +⎢ ⎥⎜ ⎟ω ω⎝ ⎠⎣ ⎦
,  

( ) ( )
( )

( )
( )

2 2

2 2

0.165 0.335
1

0.00207 0.09

k k
F k

k k
α α

α

α α

ω ω
ω = − −

ω + ω +
, and 

( ) ( )
( ) ( )

3

2 4

0.000883735 0.108008

0.000186323 0.0920702

k k
G k

k k
α α

α

α α

ω+ ω
ω = −

+ ω + ω
.   
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APPENDIX B 
 

 

The parameters , 1, 2,3,4ip i =  in equations (2.27) and (2.28) 

( )
( ) ( )

2
7

1 2 2
5 4

16
( )

8 1 ( )
c r x a

p k
r r p k p k

α

α

− µ
=

+µ − −µ +
, ( )

( ) ( )

2
7

2 2 2
5 4

16
( )

8 1 ( )
c r x a

p k
r r p k p k

α

α

− µ
=

+µ − −µ −
, 

( ) ( ) ( )( ) ( )( )2 2 2 2
3 6 7 6 72

8 ( )( ) 8 1 1 8 1 1 2 1 2B kp k r r r a a c c a c c x
kα α
α

⎡ ⎤
= + +µ +µ + − +µ + − + +⎢ ⎥

⎣ ⎦
, 

( ) ( ) ( )( ) ( )22 2 2 2 2
4 3 6 72

( )( ) 32 1 2 8 1 1 1 8 8B kp k p r r a r a c c x a
kα α α
α

⎡ ⎤µ ⎡ ⎤= − − + +µ +µ +µ + − − µ⎢ ⎥ ⎣ ⎦⎣ ⎦
. 

( ) ( ) ( )( )2 2
5 6 7 6 72

8 ( )1 8 1 2 2 1B kp k r a c c x a c c
k α
α

⎡ ⎤
= + + +µ + + +µ − µ⎢ ⎥
⎣ ⎦
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APPENDIX C 
 

 

Coefficients iC  in equations (43)  

2
1 15 11 23C q q= + ω , 2 7 1 18 2C q q= ω + ω , 2

3 16 9 1 6 2 13C q q q= + ω − ω ω  

2
4 19 8

1

C q q ω
= − +

ω
, 

2
3 2

5 10 2 5
1 1

qC q q ω
= + ω −
ω ω

,  2
6 14 4 13C s s= + ω , 7 19 1 8 2C s s= ω + ω , 

2
8 3 5 2 10 1 23C s s s= + ω − ω ω , 2

9 7 18
1

C s s ω
= − +

ω
, 

2
16 1

10 6 1 9
2 2

sC s s ω
= + ω −
ω ω

, 2
11 14 4 16 2C s s ω= + , 

2
12 15 11 26 2C q q ω= + , ( ) ( )( )2 2

13 3 1 16 2 9 10 1 2 6 5 1 22 3 3C s q q s q sω ω ω ω ωω= + + + + +  

( )2 2
14 19 1 7 8 1 2 18 22 3 3C s q s qω ωω ω⎡ ⎤= + − −⎣ ⎦ , ( )3 2

15 16 1 9 1 14 2 4 1 22 2 3C s s q qω ω ω ω ω= + + +  

3 2
16 16 1 9 1 6 1 2C s s sω ω ω ω= − + ,  2

17 7 1 18 1 2C s sω ωω= − , 

3 2
18 3 2 5 2 15 1 11 2 12 2 3C q q s sω ω ω ω ω= + + + , 3 2

19 3 2 5 2 10 2 1C q q qω ω ω ω= − + , 2
20 8 2 19 1 2C q qω ωω= − , 

2 2
21 2 1 1 1 2 2C s b q bω ω= + , 2

22 14 4 16 2C s s ω= + , 2
23 15 11 26 2C q q ω= + , 

( ) ( )2 2
24 3 1 16 2 9 10 1 2 6 5 1 22 3 3C s q q s q sω ω ω ω ωω⎡ ⎤= − + + − + −⎣ ⎦ , 

( )2 2
25 19 1 7 8 1 2 18 22 3 3C s q s qω ωω ω⎡ ⎤= − + + −⎣ ⎦ , 3 2

26 16 1 9 1 14 2 4 1 22 2 3C s s q qω ω ω ω ω⎡ ⎤= − − + +⎣ ⎦  

3 2
27 16 1 9 1 6 1 2C s s sω ω ω ω= − + − ,  2

28 7 1 18 1 2C s sω ωω= − + , 

3 2
29 3 2 5 2 15 1 11 2 12 2 3C q q s sω ω ω ω ω= + − − , 3 2

30 3 2 5 2 10 2 1C q q qω ω ω ω= − + , 2
31 8 2 19 1 2C q qω ωω= − , 

2 2
32 2 1 1 1 2 2C s b q bω ω= − . 
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APPENDIX D 
 
 

D.1 THE NAVIER-STOKES EQUATIONS  

The purpose of this Appendix is to provide detailed analysis of the fluid 

equations that are used to determine the aerodynamic loading on the wing. The 

fluid dynamics equations constitute the momentum and continuity equations. 

These equations are given in Cartesian coordinates as follow [24].  

The continuity equation: 

 

0D
Dt
ρ ρ+ ⋅ =V∇      (D.1) 

 
where the material derivative /D Dt  represents the rate of change following a 

fluid particle, ρ  is fluid density, V  is the fluid velocity vector, and 

ˆˆ ˆi j k
x x x
∂ ∂ ∂

+ +
∂ ∂ ∂

∇ = , where î , ĵ , k̂  are the unit vectors of Cartesian coordinates 

x , y , and z  respectively.  

Momentum equation: 

 

( ) ( )21
3

D p
Dt t

νν
ρ

∂
= + ⋅ = − + + ⋅
∂

V V V V f V V∇ ∇ ∇ ∇ ∇         (D.2) 

 
where ν  is kinematic viscosity, p  is the pressure, f  represents the body forces 

per unit mass. 

In the case of subsonic flow at speeds below 0.45c  (where c  is the speed 

of sound) the fluid can be considered incompressible and inviscid. In this case 
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the Navier-Stokes equations become the Euler equations in which the continuity 

equation will be 

 
0⋅ =V∇                         (D.3) 

 
and the momentum equation: 

 

( ) 1D p
Dt t ρ

∂
= + ⋅ = −
∂

V V V V f∇ ∇                             (D.4) 

 
 

D.2 VORTICITY AND CIRCULATION 

The motion of the fluid consists of translation, rotation, and deformation. 

The rotation of the fluid is represented by the angular velocity which in terms of 

the fluid velocity will be [24]: 

 
1
2

= ×ω V∇              (D.5) 

 
The vorticity vector Ω  is defined as twice the angular velocity: 

 
2= = ×Ω ω V∇      (D.6) 

 
Figure D.1 represents an open surface S  enclosed by the curve C . Using the 

Stokes theorem, the vorticity on the surface S  is related to the line integral 

around C  by the following formula: 

 

S S C

dS dS dl× ⋅ = ⋅ = ⋅∫ ∫ ∫V n Ω n V∇           (D.7) 
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where n  is the normal vector to the surface S , and dl  is the differential vector 

length on the curve C .  

The right hand side of the equation (D.7) defines the circulation and is 

represented by: 

 

C S

dl dSΓ = ⋅ = ⋅∫ ∫V Ω n           (D.8) 

 
The circulation is tied to the rotation of the fluid. If the viscous force is very 

large, the fluid rotates like a rigid body. In this case 0× ≠V∇  and the flow is 

considered rotational. In the case of negligible fluid viscosity, the shear forces in 

the fluid will be small and they will not rotate the fluid. In this case 0× =V∇  and 

the flow is considered irrotational. 

 

D.3 IRROTATIONAL FLOW AND THE VELOCITY POTENTIAL  

At high Reynolds number flow-fields, the flow outside the boundary layer 

is irrotational while the flow inside is rotational. For the irrotational region of the 

flow, vorticity is zero, ( ) 0curl= × = =Ω V V∇ .  

If the velocity vector is determined by a gradient of a scalar function, 

 
= ΦV ∇               (D.9) 

 
 

the flow is irrotational (because 0× Φ =∇ ∇ ). Φ  is called the velocity potential 

function of the flow field. In this case the continuity equation will take the form of 

Laplace’s equation: 
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2 0Φ =∇                   (D.10) 

 
 

Equation (D.10) is the governing equation for the velocity for an inviscid, 

irrotational and incompressible flow. It is a linear elliptic partial differential 

equation14. Regarding fluid-structure boundary (see Figure D.2), the boundary 

conditions require [24]: 

1. The normal component of the relative velocity between the fluid 

and the solid surface is zero at the boundary: 

 
( ) 0S− ⋅ =V V n       (D.11a) 

 
 where SV  is the velocity of the solid surface and n  is the normal 

unit vector. 

2. At infinity (far from the solid boundary) the disturbance V  decays 

to zero: 

 
lim 0
r→∞

=V         (D.11b) 

 
where r  represents the distance from the boundary. 

 

D.4 KELVIN’S THEOREM 

                                            

14 A differential equation of the form:  
2 2 2

2 2 0A B C D E F
x y x yx x

∂ φ ∂ φ ∂ φ ∂φ ∂φ
+ + + + + =

∂ ∂ ∂ ∂∂ ∂
 is called elliptic 

if 2 / 4 0AC B− > . 
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The Kelvin’s theorem (e.g. [23, 24]) states that in an inviscid, 

homogeneous flow (in a homogeneous flow the density depends only on the 

pressure) with conservative body forces, the circulation around a closed fluid line 

remains constant with respect to time. 

 The time rate of the circulation along a closed curve C  (see Figure D.1) is: 

 

C C C

D D D Ddl dl dl
Dt Dt Dt Dt
Γ
= ⋅ = ⋅ + ⋅∫ ∫ ∫

VV V           (D.12) 

 

The expression for D
Dt

V  is given by equation (D.4) restated below: 

 
1D p

Dt ρ
= −

V f ∇     (D.4) 

 
If the body forces (the gravity forces) are considered conservative, they 

can be expressed by a body-force potential, F : 

 
F=f ∇       (D.13) 

 
Since a particular fluid particle is followed, the order of differentiation does 

not mater: 

 
D Dldl d d
Dt Dt

= = V      (D.14) 

 
Introducing equations (D.4), (D.13), and (D.14) into equation (D.12) yields 

 



www.manaraa.com

243 

 

1

C C C C

D dl dF dp d
Dt ρ

⋅ = − + ⋅∫ ∫ ∫ ∫V V V         (D.15) 

 
Because the density is a function only of the pressure, all right hand side 

terms in equation (D.15) form exact differentials.  The integral of an exact 

differential around a closed path is zero. So, 

 

0
C

D D dl
Dt Dt
Γ
= ⋅ =∫ V        (D.16) 

 
Equation (D.16) is known as Kelvin’s theorem. Consider the flow around 

an airfoil which it is initially at rest and then suddenly is in constant forward 

motion. As a consequence of Kelvin’s theorem, in addition to the circulation 

developed around the airfoil, a starting wake vortex must exist such that the total 

circulation around a line surrounding both airfoil and wake remains unchanged: 

 

( )1 0airfoil wake
D
Dt t
Γ
= Γ +Γ =
∆

        (D.17) 

 
where airfoilΓ  is the circulation around the airfoil and wakeΓ  is the circulation of the 

wake. 

 

D.5 HELMHOLTZ’S VORTEX THEOREMS [24] 

 At this point it is necessary to define various quantities for the vorticity 

vector, quantities which will be necessary for modeling the lifting flow. The vortex 

lines are the field lines parallel to the vorticity vector and these lines have the 

following property: 
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0dlΩ× =       (D.18) 

 
 The vortex lines passing through an open curve in space form a vortex 

surface and the vortex lines passing through a closed curve in space form a 

vortex tube. A vortex tube having an infinitesimal cross-sectional surface is 

named vortex filament. 

 A volume Vol  enclosed by a surface S  is considered. Applying the 

divergence theorem on the vorticity on the surface S  yields: 

 
( ) 0

S Vol Vol

dS dV dV⋅ = ⋅ = ⋅ × =∫ ∫ ∫Ω n Ω V∇ ∇ ∇             (D.19) 

 
because the divergence of the curl of any vector is identically zero. 

Figure D.3 represents a vortex tube enclosed by the surfaces 1S , 2S , 

and 3S . Applying (D.19) to the vortex tube yields: 

 

1 2

0
S S S

dS dS dS⋅ = ⋅ − ⋅ =∫ ∫ ∫Ω n Ω n Ω n                (D.20) 

 
because the surface 3S  is parallel to the vorticity its contribution vanishes and n  

is considered positive in the direction of vorticity. The equation (D.20) can be 

written as: 

 

1 2S S

dS dS constant⋅ = ⋅ =∫ ∫Ω n Ω n            (D.21) 
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If 1C  is a curve that encloses the surface 1S  (see Figure D.3), the circulation 

around 1C  is given by equation (D.8) as: 

 

1

1 1

C
C S

dl dS constantΓ = ⋅ = ⋅ =∫ ∫V Ω n         (D.22) 

 
If the tube is reduced to a filament then equation (D.22) becomes 

 

1C dS constantΓ = =Ω         (D.23) 

 
where Ω  is the magnitude of Ω .  

Based on the above results and the Kelvin’s theorem, the following theorems 

were developed by Helmholtz: 

1. The strength of a vortex filament is constant along its length. 

2. A vortex filament cannot start or end in a fluid. 

3. The fluid that forms a vortex tube continues to form a vortex tube and its 

strength remains constant as the tube moves 

 

D.6 THE BIOT-SAVART LAW [24] 

An incompressible fluid having the continuity equation (D.3) is considered. 

There is the possibility that vorticity can exist in the fluid. The aim is to find the 

velocity field as a function of vorticity distribution. The velocity field can be 

expressed as a curl of the vector field B  such that: 

 
= ×V B∇      (D.24) 
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Since the curl of a gradient vector is zero, the vector field B  can be selected 

such that: 

 
0⋅ =B∇       (D.25) 

 
Inserting (D.24) into the vorticity expression (D.5) and making use of 

vector/tensor identity15, gives: 

 
( ) ( ) 2= × = × × = ⋅ −Ω V B B B∇ ∇ ∇ ∇ ∇ ∇     (D.26) 

 
Inserting equation (D.25) into equation (D.26), the vorticity becomes: 

 
2= −Ω B∇      (D.27) 

 
The solution of equation (D.27) obtained using Green’s theorem is (e.g. 

[24, 193]): 

 

0 1

1
4 V

dV
π

=
−∫∫∫
ΩB

R R
          (D.28) 

 
where B  is estimated at point P  (see Figure D.4), 0R  is the distance from the 

origin O  to P , and 1R  is the distance from the origin to the point of integration of 

vorticity as seen in Figure D.4. Introducing (D.28) into expression (D.24), the 

velocity field is obtained as: 

 

                                            

15 ( ) ( ) ( )× × × ×F G H = F H G - F G H  is true for any arbitrary vectors F , G , and H   
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0 1

1
4 V

dV
π

= ×
−∫∫∫
ΩV

R R
∇      (D.29) 

 
 An infinitesimal section of the vorticity filament is shown in Figure D.5. The 

cross-sectional surface dS  is selected in the way that it is normal to the vorticity 

Ω ,  dl dl=
Ω
Ω

, dSΓ = Ω , and dV dSdl= . For a vortex filament the velocity field 

is: 

 

0 1 0 1 0 1

1 1 1
4 4 4V V V

dldV dSdl
π π π

×
= × = × = Γ

− − −∫∫∫ ∫∫∫ ∫∫∫
Ω ΩV

R R R R R R
∇

∇ ∇  

 
Carrying out the curl operation, the final expression for velocity is: 

 
( )0 1

3
0 1 0 1

1
4 4V V

dldl
π π

× −× Γ
= Γ =

− −∫∫∫ ∫∫∫
R R

V
R R R R
∇    (D.30) 

 
The expression (D.30) is called Biot-Savart law. 

 

D.7 BIOT-SAVART LAW FOR A STRAIGHT VORTEX SEGMENT 

Based on Biot-Savart law, the expression for the velocity induced by a 

straight vortex segment will be obtained. According to Helmholtz second theorem 

a vortex line cannot begin or end in a fluid and the vortex segment is a section of 

continuous vortex line. A vortex element dl  is shown in Figure D.6. The velocity 

induced by the element dl  at point P  is given by Biot-Savart law and is shown 

below: 
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34
dl

ϕ π
Γ ×

∆ =
RV

R
     (D.31) 

 
where  R  represents the distance between point P  and vortex element dl . The 

above expression can be written in the scalar form as: 

 

2
sin

4
dlϕ

ϕ
π
Γ

∆ =V
R

    (D.32) 

 
From the Figure D.6 we can conclude that: 

 

sin
h
ϕ

=R , and ( ) ( )tan tan h
l

π ϕ ϕ− = − =  

So 

( ) ( )2tan sin
h hdl d dϕ ϕ

ϕ ϕ ϕ
⎛ ⎞∂

= − =⎜ ⎟⎜ ⎟∂ ⎝ ⎠
 

 
where dl  is the magnitude of dl . Inserting the above expressions into equation 

(D.32), the velocity induced by the vortex element dl  in scalar form is: 

 

( )
3

2 2

sin sin
4 sin 4

h d d
h hϕ
ϕ ϕ ϕ ϕ

π ϕ π
Γ Γ

∆ = =V    (D.33) 

 
Considering a vortex segment as shown in Figure D.7 the velocity induced by this 

segment will be the integration of equation (D.33) over the entire segment 

(1 2→ ): 

 



www.manaraa.com

249 

 

 ( )
2

1,2

1

1 2sin cos cos
4 4

d
h h

ϕ

ϕ
ϕ

ϕ ϕ ϕ ϕ
π π
Γ Γ

= = −∫V    (D.34a) 

 
And in vectorial form [25]: 

 

( )
1,2 1 2 ˆcos cos

4 hϕ ϕ ϕ
π
Γ

= −V e          (D.34b) 

 
where ê  is a unit vector pointed in the direction of 

1,2ϕV  (see Figure D.7). 

The expression (D.34) is called the Biot-Savart law for a straight vortex 

segment. For computational purpose, equation (D.34) will be modified in the 

following way [25]. The nomenclature is given in Figure D.7. 

 
( )1 1 1 ˆ ˆsinl l lhϕ× = =r r e e  

( )1 1 1sinl l lhϕ× = =r r  

1 /h = ×l r l , 1 1ˆ /l l= × ×e r r  

1 1 1cosl l ϕ⋅ =r r  from where ( )1 1 1cos /l l= ⋅r rϕ  

2 2 2cosl l ϕ⋅ =r r  from where ( )2 2 2cos /l l= ⋅r rϕ  

1 1 1ˆ /=e r r , 2 2 2ˆ /=e r r  
 
 

Introducing the above expressions into equation (D.34b), gives 

 

1,2

1 2 1

1 21 1
4

l l ll
l ll lϕ π

⎛ ⎞⋅ ⋅ ×Γ
= −⎜ ⎟⎜ ⎟× ×⎝ ⎠

r r rV
r rr r

 

( )1 1 2 1
1 22 2

1 21 1

ˆ ˆ
4 4

l ll l
l lπ π

⎡ ⎤⎛ ⎞× ×Γ Γ ⎡ ⎤= ⋅ − = ⋅ −⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥× ×⎝ ⎠⎣ ⎦

r r r r e e
r rr r
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( )
1,2

1
1 22

1

ˆ ˆ
4

l l
l

ϕ π
×Γ ⎡ ⎤= ⋅ −⎣ ⎦
×

rV e e
r

    (D.35) 

 

D.8 UNSTEADY VORTEX LATTICE METHOD 

The unsteady vortex method used here follows the work of  Preidikman 

[25]. The method is applicable to two-dimensional or three-dimensional flows and 

it is not limited by platform, camber, twist, or angle of attack. Also the method is 

valid for incompressible and irrotational flows over the entire flow-field except 

near the boundaries and in the wakes. The method accounts for aerodynamic 

nonlinearities associated with the angle of attack, static deformation, vorticity-

dominated flow, and unsteady behavior. It is also not limited to small periodic 

motion. The general unsteady vortex-lattice model imitates the boundary layers 

and the wakes as vortex sheets [36]. The vortex sheets are of two types, bound-

vortex sheet, and free vortex sheet. The bound-vortex sheets create the 

boundary layer on the surface of the wing while free-vortex sheets represent the 

wakes. In order to simplify the problem the wing is considered thin. In this case, 

the vortex sheets on the upper and lower surfaces of the wing merge into a 

single sheet on the camber surface. Figure D.8 shows the position of an arbitrary 

point P  in the airflow near the wing structure. The airflow is having the 

undisturbed velocity field ∞V . The wing structure is moving with velocity SV , n  

represents the vector normal to the lifting surface, the disturbance created by the 

body is given by the velocity field DV  which is associated with wakes and 

boundary layers, and FV  is the fluid velocity field. Two systems of coordinate are 
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chosen: B-frame is the coordinate system which moves with the body and N-

frame is the inertial coordinate system which is not moving in time. At rest the 

two coordinate systems coincide. The position vector of a point P  in the N-frame 

is: 

 
B= +R R r       (D.36) 

 
where BR  is the position of the origin BO  relative to N-frame and r  is the position 

of the point P  relative to B-frame. Differentiating (D.36) with respect to time, the 

velocity of a point P  in the N-frame is obtained: 

 
N B

F B= + × +V V ω r v          (D.37) 

 

where B
B

d
dt

=
RV  is the absolute velocity of the origin BO  relative to N-frame, 

N Bω   is the angular velocity of the B-frame relative to N-frame, and d
dt

=
rv  is the 

velocity of the point P  relative to B-frame.  

For incompressible fluid at high Reynolds number, the flow is governed by 

the Euler’s equations: 

 
0F⋅ =V∇              (D.38a) 

 

( ) 1F
F F p

t
∂

+ ⋅ = −
∂
V V V

ρ
∇ ∇                                 (D.38b) 
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where ρ  is fluid density, p  is the fluid pressure. Equations (D.38) are valid for 

the region outside to the boundary surfaces, boundary layers and wakes. The 

boundary conditions for the above equations are16: 

 
( ) 0F S− ⋅ =V V n        (D.39a) 

lim 0F→∞
=

r
V                   (D.39b) 

 
The velocity field FV  is given by the sum of two velocity components: 

 
F D∞= +V V V           (D.40) 

 
The velocity DV  is generated by the vorticity in the boundary layers on the 

structure surface and by the wakes. Outside the boundary layers and wakes, DV  

is irrotational and can be expressed as the gradient of a potential function Ψ : 

 
D = ΨV ∇           (D.41) 

 
Since the flow is incompressible, both ∞V  and DV  satisfy the continuity equation 

(D.38a) which for DV  will become: 

 
2 0D⋅ = Ψ =V∇ ∇                (D.42) 

 
with the no-penetration boundary condition given by the equation: 

 

                                            

16 Equation (D.39a) is called no-penetration condition. 
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 ( )S ∞Ψ ⋅ = − ⋅n V V n∇       (D.43) 

 
which is valid on the surface. Another boundary condition must be satisfied. This 

is the infinity condition generated by the equation: 

 
lim 0
→∞

Ψ =
r

∇                   (D.44) 

 
This condition requires that the flow remains undisturbed at a distance far from 

the body. The velocity disturbance DV  is computed with Biot-Savart law  in which 

the distance B =R - R r  appears in the denominator, so equation (D.44) is 

satisfied. 

 The velocity field of the fluid is computed by the equation of continuity 

(D.43). Once the velocity is calculated, the pressure is obtained from the 

momentum equation (D.38b) which is integrated to produce Bernoulli’s equation. 

The aerodynamic loads are then obtained by integrating the pressure. Besides 

the boundary conditions, Kutta condition, which states that the pressure at the 

wing leading edge must be the same as the pressure at the wing trailing edge, 

and Kelvin and Helmholtz theorems must be used to determine the wakes.   

In the frame of the unsteady vortex-lattice method, the bound-vortex 

sheets are replaced by lattices of short segments of constant circulation. Each 

area element in the lattice is enclosed by a loop of vortex segments. The leading 

segment of the vortex loop is located at the panel’s quarter chord line. Because 

of the approximation of the sheets with lattices, the boundary condition (D.43) is 

satisfied at a finite number of points named control or collocation points. Also at 
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control points, velocities and aerodynamic loads are calculated. The control 

points are located at the lattice center.  

An example of lattice of 3 4×  elements is shown in Figure D.9. The 

circulation around each segment is unknown. In this example there are 31 

unknowns. The size of the problem can be reduced by considering that each 

element is enclosed by a closed loop of vortex segments with the same 

circulation. In this way the spatial conservation of circulation is automatically 

satisfied. The circulations loops are represented by ( )iG t , with 1...12i = , and are 

represented in Figure D.10. As we can see the number of unknowns is reduced 

from 31 to 12. The circulation of a segment is then given by the difference of the 

circulation loops of the two elements that are separated by that segment, for 

example: 

 
( ) ( )12 5 4G t G tΓ = −  or ( )11 4G tΓ =  

 
The nodes in the lattice are called aerodynamic nodes in order to distinguish 

them from the structural nodes obtained by discretization of the wing structure. 

The next step is to find the circulations loops ( )iG t  in the way that velocity field 

FV  satisfies the boundary condition (D.43) at control points. 

 The wing starts to move with a constant speed through a fluid which would 

be at rest otherwise.  All circulations are set to zero before the wing starts to 

move. Then at each time step the circulations are calculated. Along the trailing 

edge and tip of the wing, the vortex segments are convected into the wake at the 
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local particle velocity in order to satisfy the Kutta condition [25]. No wake exists in 

the beginning of the motion. 

 In order to calculate the circulations, a matrix of influence coefficients ,i jA , 

for , 1, 2,...,i j NP=  ( NP  is the total number of elements in the bound lattice), must 

be developed. The coefficient ( ),i jA t  is the normal component of the velocity 

,D iV  at the control point of the i -th element generated by the vortex loop of 

element j  (see Figure D.11) and it is a function of time. The normal component 

of the velocity at the control point of the i -th element associated with all bound 

vortices is given by: 

 

( ) ( ) ( ) ( ), ,
1

, ,
NP

bound i i i i i j j
j

t t A t G t
=

⋅ = ∑V r n r       (D.45) 

 
where ir  represents the position vector in the B-frame and ( ),i tn r  is the normal 

unit vector at the control point of i . 

 At the initial time 0t = , the no-penetration boundary condition (D.43) for 

the i -th element becomes: 

 

( ) ( ) ( )( ) ( ),
1

0 0 ,0 ,0
NP

i j j S i i
j

A G ∞
=

= − ⋅∑ V r V n r             (D.46) 
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Knowing ,i jA , ( ),0S iV r , and ∞V , the circulations ( )0jG  can be solved using LU  

decomposition17 or Gauss elimination. 

 At the next time step t t= ∆ , the starting vortex has to be convected at the 

local particle velocity. Along the wing tip and trailing edge the local velocity 

relative to B-frame is calculated at each aerodynamic node from the expression: 

 
F B= −v V V                  (D.47) 

 
where FV  is the absolute velocity of the fluid particle and it is calculated using 

Biot-Savart law. 

 In order to obtain the displacements of the aerodynamic nodes in the B-

frame, the equation (D.47) is integrated: 

 

0

t

dt
∆

∆ = ∫r v             (D.48) 

 
Referring to the Figure D.12, the vortex segment between the nodes 22 

and 23 has the circulation ( )14 t tΓ − ∆  which is the circulation of the vortex segment 

between the nodes 8 and 12 at the previous time step t t−∆ . In this way the 

spatial conservation of circulation is satisfied.  

The length and direction between the nodes 8 → 22 and 12 →23 is 

determined by an approximation of equation (D.48): 

 
                                            

17 According to www.wikipedia.com the LU decomposition is a matrix decomposition which writes 
a matrix as the product of a lower and upper triangular matrix. This decomposition is used in 
numerical analysis to solve systems of linear equations or find the inverse of a matrix 
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( )22 8 8 , t t t− = −∆r r v r    (D.49a) 

( )23 12 12 , t t t− = −∆r r v r    (D.49b) 

 
for t t= ∆ . 

 Next, the bound circulations of the i -th element at the time step t t= ∆  are 

calculated using the no-penetration condition: 

 

( ) ( ) ( ) ( )( ) ( ),
1

, , ,
NP

i j j S i W i i
j

A t G t t t t∞
=

∆ ∆ = ∆ − ∆ − ⋅ ∆∑ V r V r V n r      (D.50) 

 
where ( ),W i t∆V r  is the velocity field associated to the vorticity in the wake. The 

purpose of the vortex lattice method is to find the velocity field FV  needed in the 

Bernlulli’s equation formulated in Chapter 3 to calculate the airflow pressure 

necessary to compute the aerodynamic loads.  
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Figure D.1. The relationship between line and surface integrals 

 

 

Figure D.2. Fluid-structure boundary  
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Figure D.3. Vortex tube 

 

 

Figure D.4. Velocity estimated at point P  due to vorticity distribution 
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Figure D.5. Velocity estimated at point P  due to a vortex filament 

 

 
Figure D.6. Velocity induced by a straight vortex element 
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Figure D.7. Velocity induced by a straight vortex segment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.8. The position of an arbitrary point P  in the airflow 
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Figure D.9. A 3 4×  elements lattice 
 

 
Figure D.10. Vortex loops 
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Figure D11. Influence coefficients interpretation  
 
 

 
 

Figure D.12. Vortex loops at time t t= ∆  
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APPENDIX E 
 
The detailed structures of ijY  

3

11 1

3

0 0
0 0
0 0

Y
Y

Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y ,    
5

12

5

0 0
0 0 0

0 0

Y

Y

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y ,    
4

13 2

4

0 0
0 0
0 0

Y
Y

Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y ,    
6

14

6

0 0
0 0 0

0 0

Y

Y

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y ,   

3

21

3

0 0
0 0 0

0 0

Y

Y

′−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥′⎣ ⎦

Y ,    
5

22 1

5

0 0
0 0
0 0

Y
Y

Y

′⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥′⎣ ⎦

Y ,    
4

23

4

0 0
0 0 0

0 0

Y

Y

′−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥′⎣ ⎦

Y ,    
6

24 2

6

0 0
0 0
0 0

Y
Y

Y

′⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥′⎣ ⎦

Y  

iY  are the finite element shape functions given by equations (3.18), and a prime 

denotes a derivative with respect to y . 

The matrices G AS , AF , and SF  of equation (3.35) 

1,1

14,3

1,2

2,2 2,3

3,3 3,4

4,4 4,5

5,6 5,7

6,7 6,8

7,2 7,3

8,3 8,4

9,4 9,5

10,5 10,6

11,7 11,8

12,8

13,2 13,3

14

AS =

G G 0 0 0 0 0 0

0 G G 0 0 0 0 0
0 0 G G 0 0 0 0
0 0 0 G G 0 0 0
0 0 0 0 0 G G 0
0 0 0 0 0 0 G G
0 G G 0 0 0 0 0
0 0 G G 0 0 0 0
0 0 0 G G 0 0 0

G 0 0 0 0 G G 0 0
0 0 0 0 0 0 G G
0 0 0 0 0 0 0 G
0 G G 0 0 0 0 0
0 0 G G

1 1

2 2

8 18

15,4 15,5

16,6 16,7

17,7

,4

17,8

18,8

, ,  

S A

S A
S A

S A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎧ ⎫ ⎧ ⎫⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ = =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

F F

F F
F F

F F

0 0 0 0

0 0 0 G G 0 0 0

0 0 0 0 0 G G 0

0 0 0 0 0 0 G G

0 0 0 0 0 0 0 G
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The present work deals with the effect of parametric excitation and 

uncertainties on the flutter characteristics of an aeroelastic wing. The work is 

structured in two parts. First part explores the possibility of suppressing wing 

flutter via parametric excitation along the plane of highest rigidity in the 

neighborhood of combination resonance. The aerodynamics of the wing is 

modeled using Theodorsen’s theory and the equations are obtained using 

Hamilton’s principle. The domains of attraction and bifurcation diagrams are 

obtained to reveal the conditions under which the parametric excitation can 

provide stabilizing effect. The basins of attraction for different values of excitation 

amplitude reveal the stabilizing effect that takes place above a critical excitation 

level. Below that level, the response experiences limit cycle oscillations, cascade 

of period doubling, and chaos. For flow speed slightly higher than the critical 

flutter speed, the response experiences a train of spikes, known as “firing,” a 
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term that is borrowed from neuroscience, followed by “refractory” or recovery 

effect, up to an excitation level above which the wing is stabilized.  

The second part of the paper investigates the influence of stiffness 

uncertainties on the flutter behavior of an aeroelastic wing using a stochastic 

finite element approach. A numerical algorithm to simulate unsteady, nonlinear, 

incompressible flow (based on the unsteady vortex lattice method) interacting 

with linear aeroelastic wing in the presence of uncertainties was developed. The 

air flow and the wing structure are treated as elements of a single dynamical 

system. In order to implement this algorithm in the presence of uncertainties, a 

random field representing bending or torsion stiffness parameters is introduced 

using a truncated Karhunen-Love expansion. Both perturbation technique and 

Monte Carlo simulation are used to establish the boundary of stiffness 

uncertainty level at which the wing exhibits LCO and above which the wing 

experiences dynamic instability. The analysis also includes the limitation of 

perturbation solution for a relatively large level of stiffness uncertainty. It was 

found that the presence of the uncertainties in bending and torsion stiffness can 

lower the flutter speed and the effect of torsion stiffness uncertainty induce 

greater disturbance in the system. 
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